
Work-in-Progress: Impacts of Critical-Section
Granularity When Accessing Shared Resources

Tanya Amert
Department of Computer Science

Carleton College
tamert@carleton.edu

Catherine Nemitz
Department of Mathematics and Computer Science

Davidson College
canemitz@davidson.edu

Abstract—The prevalence of computer-vision applications in
autonomous vehicles necessitates the use of graphics processing
units (GPUs), which must be shared among tasks due to size,
weight, power, and cost constraints. Such sharing is typically
managed via locking protocols. However, experiments reveal a
trade-off in the granularity of such sharing; GPU operations’
execution times are reduced if multiple GPU accesses are grouped
in a single lock request (i.e., form a single critical section) rather
than assuming only one access per critical section. This grouping
exposes a broader trade-off between the extra lock overhead
(and blocking) incurred by an individual task, and the analytical
blocking experienced by all other tasks in the system. This trade-
off is expressed herein via an extended resource model and
explored using example task systems, demonstrating the impact
of different access-grouping heuristics.

Index Terms—real-time systems, synchronization, graphics
processing units

I. INTRODUCTION

With the ever-growing array of driver-assist features avail-
able on new vehicles and full autonomy looming in the future,
computer-vision (CV) applications are needed to perceive the
surrounding world. Such CV applications typically require
specialized hardware accelerators, such as graphics processing
units (GPUs). Due to stringent constraints including size,
weight, power, and cost, these GPUs must be shared among
multiple CV applications on the same platform.

Unfortunately, managing shared hardware resources is chal-
lenging in general, and is especially problematic for GPUs.
Preempting computations is often impractical, and the built-in
scheduling behaviors of NVIDIA GPUs can lead to unexpected
delays [11]. Locking protocols can be used to arbitrate access
to these shared GPUs [8].

Requiring mutually exclusive GPU accesses gives rise to
a trade-off: the more computations a task performs while
holding the lock (i.e., in a critical section), the sooner it
completes, as it does not incur the additional overhead of
multiple lock and unlock requests; however, the additional
computations induce longer blocking times experienced by
other tasks. Before describing our contributions regarding this
trade-off in more detail, we first briefly overview related work
on GPU sharing and trade-offs in computation granularity.

This work was supported by NSF grants CPS 1837337, CPS 2038855, and
CPS 2038960, and ONR grant N00014-20-1-2698.

Related work. Amert et al. [1] presented TimeWall, a frame-
work that provides temporal isolation for CPU+GPU applica-
tions. Although TimeWall allows multiple GPU accesses to be
performed as part of a single critical section, an exploration
of the impact of doing so was left to future work. In Sec. II,
we present the results of such experiments.

Other approaches in GPU management include modifica-
tions to open-source portions of the NVIDIA scheduler to
enable deadline-driven scheduling [7] or treating GPU compu-
tation and copy engines as mutually exclusive resources [8].
However, to our knowledge, none of the prior work explored
varying the groupings of computations into critical sections.

Voronov et al. [10] provided heuristics to merge nodes in
graph-based applications, aiming to reduce overall analytical
response-time bounds. Others have considered limited pre-
emptive scheduling [5], [9], which reduces overhead by only
allowing preemption at certain points in tasks’ execution. Al-
though preemption points effectively group accesses into larger
non-preemptive regions, such non-preemptivity precludes the
possibility of concurrent CPU+GPU execution by different
tasks. In prior work on both limited-preemption scheduling and
graph node merging, blocking time due to shared resources
was assumed to be already included in per-task worst-case
execution times. On the contrary, we explore the trade-off that
arises when the worst-case blocking is not assumed as a given.

Contributions. In this paper, we present three contributions.
First, we detail our preliminary experiments grouping GPU
accesses within a single critical section. In our experiments,
grouping multiple GPU accesses in one critical section reduced
99.9th -percentile access durations by up to 68%.

Second, we provide an extended resource model that enables
us to explore the trade-off in resource-access granularity and
blocking time; we note that this model applies generally to
any shared resources, not just GPUs.

Finally, we use our model to explore this trade-off in a case-
study evaluation of example task systems, demonstrating the
differences in tasks’ repsonse times when different heuristics
are used to determine the critical-section granularity.

Organization. The remainder of this paper is organized as
follows. We detail our motivating GPU experiments in Sec. II,
describe our extended resource model in Sec. III, illustrate its
implications in Sec. IV, and conclude in Sec. V.

1

II. MOTIVATING EXPERIMENT

We now describe the setup and discuss the results of our
GPU-access-grouping experiments.

A. Experimental Setup
We now describe our experimental platform and the work-

load we executed upon it.

Platform. Our experiments were performed on a machine with
two eight-core 2.10-GHz Intel Xeon Silver 4110 CPUs and one
NVIDIA Titan V GPU. Each CPU core has a pair of 32-KB
L1 instruction and data caches, and a 1-MB L2 cache; all eight
CPU cores on a socket share an 11-MB L3 cache. To mitigate
interference, we disabled hyperthreading and graphics output.

Workload. Our workload was comprised of a GPU-based CV
application called Histogram of Oriented Gradients (HOG).
The hog workload, based on the CV library OpenCV [2],
performs pedestrian detection by processing images at 13
different resolution levels. For each image (a single frame of
a video) and for each level, there are five GPU computations,1

K1–K5, as depicted in Fig. 1.
We executed two instances of the hog program for 5000

frames each, and measured the duration of each GPU com-
putation on the CPU using clock_gettime(). To ensure
that only one of the two instances could use the GPU at any
given time, we arbitrated GPU access using a locking proto-
col [1]. We considered three different locking configurations,
separately grouping GPU copy and computation operations,
which we collectively refer to as accesses:

• GROUP-NONE: No accesses were grouped together. Pro-
cessing one image required 78 lock requests (one copy-in,
(13 · 5)− 1 computations, and 13 copy-out operations).

• GROUP-MINOR: Each K3–K5 sequence occurred within
a single critical section; copy-out operations were minorly
grouped. Thus, processing one image involved 1 + 13 ·
3 + ⌈13/3⌉ = 45 lock requests.

• GROUP-MAJOR: All computations were grouped into one
critical section (K2–K5 for the first level, K1–K5 for the
others); all copy-out operations were grouped. Processing
one image required 1 + 13 + 1 = 15 lock requests.

We considered the workload within the context of a larger
system, and therefore executed our workloads as real-time
tasks within LITMUSRT [6]. We allocated only four of the
CPUs to our hog tasks and distributed the 11-MB L3 cache
such that the GPU-using tasks were allotted only 4.4-MB of
the total L3 cache. For the purpose of measuring GPU access
times, however, we did not execute any additional workloads.
Each hog task executed with a period of 20 ms.

B. Results
The 50th , 99th , and 99.9th -percentile GPU-access-duration

timings are given in Tbl. I for the computations performed in
each of the three configurations.2

1For the original image resolution, computation K1, which resizes the
image, is skipped.

2The worst-case measurements include extreme outliers; these outliers were
the subject of prior work [1], so they are not discussed here.

Copy-in
image

K1

K1

K3

K3

K3

K5

K5

K5

K4

K4

K4

K2

K2

K2

Copy-out
detections

Fig. 1. Simplified structure of the hog application, comprising copying image
data onto the GPU, computations (labeled K1–K5), and copying detection
results off of the GPU.

TABLE I
GPU-ACCESS DURATIONS (IN MICROSECONDS) MEASURED ON THE CPU

FOR EACH OF THE ACCESS-GROUPING CONFIGURATIONS WE CONSIDERED.

Configuration Statistic K1 K2 K3 K4 K5

GROUP-NONE
50th 120 125 150 123 140
99th 145 146 177 145 171
99.9th 150 152 191 150 182

GROUP-MINOR
50th 120 125 151 24 41
99th 146 146 184 34 65
99.9th 153 152 191 48 73

GROUP-MAJOR
50th 121 25 46 23 40
99th 144 140 73 31 63
99.9th 153 150 90 48 76

Observation 1. Grouping GPU accesses reduces the durations
of later accesses within the same critical section.

Comparing GROUP-NONE and GROUP-MINOR, 99.9th -
percentile measurements of K4 and K5 were reduced by up to
68% when they occurred immediately following K3 without
lock and unlock calls in between. Median measurements under
GROUP-MAJOR were even more drastic: K2’s duration was
reduced by 80%.

Observation 2. The number of prior accesses within a critical
section does not impact the reduction in duration of subsequent
grouped GPU accesses.

This can be seen in comparing measurements for K4 and K5
using the GROUP-MINOR and GROUP-MAJOR configurations.

III. SYSTEM MODEL

We now describe our task model and resource model, as
well as our enhancements to express the grouping of multiple
accesses within a single lock request.

A. Task Model

We consider a set τ = {τ1, τ2, ..., τn} of n tasks, where
each task τi releases a (possibly infinite) sequence of jobs,
Ji,1, Ji,2, ...; we refer to a generic job of task τi as Ji,j .

Task τi is periodic if it releases a new job every Ti time
units, and sporadic if Ti is a lower bound on the time
between job releases. Each job Ji,j must complete execution
by a deadline Di ≤ Ti time units after its release. Ignor-
ing shared resources, we represent a task as the three-tuple
τi = (Ti, Ci, Di), where Ci is the worst-case execution time of
each job Ji,j . If Ti = Di we can simplify this to τi = (Ti, Ci).

2

B. Resource Model

Although we consider independent tasks, they may need to
access a shared resource.3 When job Ji,j requires access to a
shared resource, it makes a lock request for the lock protecting
that resource. It acquires the lock once the request is satisfied,
and it then holds the lock (and is thus guaranteed mutually
exclusive access to that resource) until it releases the lock via
an unlock request. The instructions executed while a job holds
the lock comprise a critical section; each task can thus be
represented as an alternating sequence of unprotected sections
and critical sections of code, as illustrated in Fig. 2 (a).

C. Request Model

A critical section is typically comprised of a single access to
a shared resource. We extend this by allowing a critical section
to consist of multiple individual accesses. We let αk

i refer to
the kth shared-resource access (for k ≥ 1) made by a job
of task τi. We define γk

i as the corresponding kth non-access
segment, where γ0

i is the sequence of instructions executed
before the first access; γk

i immediately follows αk
i . A critical

section is thus a contiguous sequence of access segments, with
interleaving non-access segments, as depicted in Fig. 2 (b).

Given this access-focused viewpoint, a task τi can be
represented as the alternating sequence γ0

i , α
1
i , γ

1
i , α

2
i , γ

2
i ,

Any contiguous sequence of segments αp
i , γ

p
i , ..., α

q
i for p < q

can be grouped together into a single critical section, as long
as no segment is part of two critical sections.

We now expand our task representation to the four-tuple
τi = (Ti,Γi, Ai, Di), where Γi is a list of the durations of non-
access segments γ0

i , γ
1
i , ..., and Ai is a list of the durations of

access segments α1
i , α

2
i , If Ti = Di, we can simplify this

representation to τi = (Ti,Γi, Ai). We assume Ci is an upper
bound on the summed durations of all segments in Γi and Ai,
assuming a given grouping of accesses into critical sections.

Example 1. Consider a task system comprised of
two tasks, which make one and three accesses,
respectively: τ1 = (140, [30, 30], [10]) and τ2 =
(250, [20, 10, 20, 20], [10, 10, 10]). These two tasks are
illustrated in Fig. 3, along with two possible groupings of
each task’s accesses into critical sections. ♢

D. Access Model

Motivated by the experimental results given in Tbl. I, we
consider an access itself to be decomposed into multiple
intervals, including pre-access and post-access operations as
well as the fundamental access operation itself.

For example, on a GPU, some pre-access operations (e.g.,
loading instructions or data from memory) may be faster
if multiple accesses are performed back-to-back within a
single critical section. The observed duration of an access is
then closer to only the actual computation, for example, the
instructions executed to convert an image to grayscale.

3We assume there is only one shared resource, such as a single GPU, and
leave the extension to multiple resources as future work.

Task 𝜏𝑖

First critical
section of task 𝜏𝑖

(a)

(b)

unprotected section
critical section

lock request
unlock request

access segment
non-access segment

𝛼𝑖
1 𝛾𝑖

1 𝛼𝑖
2 𝛼𝑖

3𝛾𝑖
2

Fig. 2. The decomposition of a task and a critical section.

𝜏1

(a)

(b)

(c)

𝜏2

unprotected section
critical section

lock request
unlock request

access segment
non-access segment

Fig. 3. The task system described in Ex. 1: (a) divided into segments, (b)
with one access per critical section, and (c) with all accesses grouped.

IV. CASE STUDY: NON-PREEMPTIVE PROTOCOL

To consider the trade-offs in critical-section granularity, we
begin by focusing on a single system type and then describe
how different choices of lock granularity for our example
from Sec. III would impact response times and ultimately,
schedulability. Finally, we present an example in which access
times themselves are impacted by critical-section granularity.

A. Scheduling Algorithm and Resource Access Protocol

For our case study, we focus on the use of a fixed-priority
scheduling algorithm, deadline monotonic (DM), in which task
priorities are assigned by non-increasing deadline. Let hp(τi)
(resp., lp(τi)) be the set of tasks with priority higher (resp.,
lower) than that of τi. Under DM scheduling, the worst-case
response time, Ri, of a task τi is given by:

Ri = Bi + Ci +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
· Cj

Here, Bi is the worst-case priority-inversion blocking in-
curred by task τi, which depends on the maximum critical-
section duration of tasks in lp(τi). For simplicity, we assume
the Non-Preemptive Protocol (NPP) is used to protect access
to shared resources [4]. Under the NPP, a task executes non-
preemptively during its entire critical section. Thus, if a higher-
priority job is released immediately after a lower-priority job
acquires the lock,4 the higher priority job is blocked for the
remaining duration of the critical section.

As described in Sec. III-C, a critical section may be
comprised of multiple resource accesses. Each critical section
begins with acquiring the lock and ends with releasing the
lock. A given locking protocol adds overhead for both the

4Although the NPP inherently prevents any contention for such a lock, we
describe its execution in terms of lock and unlock calls to reflect how other
resource-access protocols function.

3

lock and unlock procedures, represented by Olock and Ounlock,
respectively. For simplicity, we assume that Olock and Ounlock
contribute to blocking of other tasks, and thus include these
terms in the duration of a given critical section. In the future,
we will explore more precise overhead accounting [3].

B. Impact of Critical-Section Granularity
We now explore the impact of access grouping on schedu-

lability using the example tasks introduced in Sec. III-C.

Example 1 (cont’d). Tasks τ1 and τ2 share a resource. Under
DM scheduling, τ1 has higher priority. For this system, we
assume that the overhead of the locking protocol, the NPP, is
fixed (i.e., does not depend on the task acquiring or releasing
the lock), with Olock = 2 and Ounlock = 1.

Task τ1 makes one access to the shared resource and thus
has one critical section with duration Olock + |α1

1|+Ounlock =
13 time units. Thus, C1 = |γ0

1 |+ 13 + |γ1
1 | = 73 time units.

If no accesses by task τ2 are grouped, as in Fig. 3 (b), then
each of the three critical sections has duration Olock + |αk

2 |+
Ounlock = 13 time units and thus C2 =

∑
k |γk

2 | + 3 · 13 =
20 + 10 + 20 + 20 + 39 = 109 time units.

If all three accesses of τ2 are grouped, as in Fig. 3 (c), the
critical section has duration Olock + |α1

2|+ |γ1
2 |+ |α2

2|+ |γ2
2 |+

|α3
2| + Ounlock = 2 + 10 + 10 + 10 + 20 + 10 + 1 = 63 time

units and C2 = |γ0
2 |+63+ |γ3

2 | = 20+63+20 = 103. ♢

However, the choice of lock granularity does not occur in
isolation. This choice can have a large impact on critical-
section duration, and in turn, blocking and schedulability.

Example 1 (cont’d). For τ1, with the most granularity, we
solve R1 = 13 + 73 = 86. Instead, with the least granularity,
R1 = 63 + 73 = 136. As R1 < D1 = 140, τ1 is schedulable.

As τ2 is the lowest priority task, B2 = 0. Thus, with the
most granularity, we solve R2 = 109 +

⌈ R2

140

⌉
· 73 = 255 >

250 = D2; task τ2 is not schedulable. If instead we choose to
group all accesses, we have R2 = 103+

⌈ R2

140

⌉
·73 = 249 < D2,

and task τ2 is schedulable. ♢

We now consider an example that is only schedulable if
accesses are not grouped.

Example 2. Consider tasks τ3 = (130, [30, 30], [10]) and τ4 =
(260, [20, 10, 20, 20], [10, 10, 10]). If all accesses are grouped,
then R3 = 136 > D3 and R4 = 249 < D4 and the task system
is not schedulable. If no accesses are grouped, R3 = 86 < D3

and R4 = 255 < D4; the task system is schedulable. ♢

The above examples illustrate the complexity in this trade-
off. We propose the following heuristics: (1) highest-priority
tasks should have all accesses grouped, and (2) lower-priority
tasks should have accesses grouped such that the system
remains schedulable. We leave to future work determining
optimal access groupings, e.g., via a linear program.

C. Granularity-Dependent Resource Access Times
We now consider the implications of the previous examples

of the GPU-using task as described in Sec. II. We look at a
single task processing one image resolution.

Example 3. Consider a task with access durations
based on the 99.9th percentile of K1–K5 observations
under GROUP-NONE in Tbl. I. Let τ5 = (20000,
[20, 20, 20, 20, 20, 20], [150, 152, 191, 150, 182]). The values
in Γ5 represent short interleaving computations. Assuming
negligible overheads, any access grouping results in C5 = 945.

If we instead group accesses using the GROUP-MAJOR ap-
proach and apply the 99.9th -percentile GROUP-MAJOR results
for K1–K5, we have C5 = 637. This significant time reduction
is independent from any time saved by reducing the number
of lock/unlock calls. ♢

Ex. 3 supports the idea in Sec. III-D that GPU-based tasks
may have some minimum baseline of execution, along with
additional operations when interleaved with other work. An
exploration of such effects will be a focal point of future work.

V. CONCLUSION

In this paper, we presented an extended request and access
model for shared resources, which was motivated by critical-
section-granularity experiments using a GPU with a real CV
application. We demonstrated, via an example using DM+NPP
scheduling, the trade-off between critical-section granularity
and the analytical blocking imposed upon other tasks.

Our next steps include extending the resource model to
include multiple resources, and extending proposed heuristics
to other schedulers and other locking protocols. We also
plan to further explore the access-duration reduction due to
grouping, and express the grouping of accesses into critical
sections as a linear program.

REFERENCES

[1] T. Amert, Z. Tong, S. Voronov, J. Bakita, F.D. Smith, and J. An-
derson. TimeWall: Enabling time partitioning for real-time multi-
core+accelerator platforms. In RTSS 2021.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[3] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-time
Operating Systems. PhD thesis, University of North Carolina at Chapel
Hill, Chapel Hill, NC, USA, 2011.

[4] G. Buttazzo. Hard real-time computing systems: Predictable scheduling
algorithms and applications. Springer US, 3rd edition, 2011.

[5] G. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive scheduling
for real-time systems: A survey. IEEE transactions on Industrial
Informatics, 9(1):3–15, 2012.

[6] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In RTSS 2006.

[7] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru.
Deadline-based scheduling for GPU with preemption support. In RTSS
2018.

[8] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for real-
time GPU management. In RTSS 2013.

[9] M. Nasri, G. Nelissen, and B. Brandenburg. Response-time analysis
of limited-preemptive parallel DAG tasks under global scheduling. In
ECRTS 2019.

[10] S. Voronov, S. Tang, T. Amert, and J. Anderson. AI meets real-time:
Addressing real-world complexities in graph response-time analysis. In
RTSS 2021.

[11] M. Yang, N. Otterness, T. Amert, J. Bakita, J. Anderson, and F.D.
Smith. Avoiding pitfalls when using NVIDIA GPUs for real-time tasks
in autonomous systems. In ECRTS 2018.

4

