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ABSTRACT
Conventional wisdom maintains that the interval of time mutually

exclusive access is granted to a shared resource (i.e., in a critical
section) should be as short as possible. However, the arbitration of

shared-resource accesses introduces overhead. As a result, there

exist task systems for which schedulability can only be guaranteed

when accesses are grouped together into one large critical section,

as opposed to many smaller sections. Furthermore, when the shared

resource is a graphics processing unit (GPU), the durations of some

GPU accesses decrease when multiple such accesses compose a

single critical section, compared to when they are kept separate.

In this paper, an extended resource model is presented in which

each critical section can comprise several grouped accesses, rather

than each access forming its own critical section. This model reveals

a trade-off between overhead and blocking: a low-priority task with

resource accesses grouped into fewer critical sections incurs less

overhead at the expense of greater blocking suffered by higher-

priority tasks. An optimal algorithm for resolving this trade-off

for a shared GPU under uniprocessor fixed-priority scheduling is

presented, alongwith an experimental evaluation that demonstrates

its benefits compared to the extremes of critical-section granularity.
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Figure 1: A GPU-based computer-vision algorithm compris-
ing five kernels per image resolution, shown here for one
resolution. The kernels can be treated as (a) individual criti-
cal sections, or (b) grouped into fewer, longer critical sections.

1 INTRODUCTION
A fundamental challenge in complex systems is the coordination of

accesses to shared resources, such as in-memory data structures or

shared hardware accelerators. When this coordination is performed

via a mutual-exclusion synchronization protocol, if one task is

accessing the shared resource then other tasks requiring access to

that resource must wait. For this reason, conventional wisdom [4,

20] dictates that a critical section, i.e., the computations performed

while guaranteed sole use of a resource, should have as short of a

duration as possible.

Following this guidance, multiple successive accesses to the same

shared resource should each be treated as an individual critical

section. Several successive accesses are common on heterogeneous

platforms equipped with shared hardware accelerators; a typical

access pattern for a computer vision (CV) application on a graphics

processing unit (GPU) is to copy the input data to the GPU, execute

a series of GPU computations called kernels on those data, and copy

the results back to the CPU. An example is illustrated in Fig. 1 for a

CV application comprising multiple kernels for each input image.

The grouping of kernels into critical sections impacts the du-

ration of each individual kernel; the 99.9th
-percentile CPU-based

measurements
1
of durations of kernels for the GPU application

depicted in Fig. 1 are given in Tbl. 1 for two kernel-grouping config-

urations. If each kernel is treated as a critical section, as depicted in

Fig. 1(a), then each kernel incurs both the synchronization protocol

overhead as well as any GPU-related overhead, e.g., due to cache

affinity loss or GPU scheduling. If, however, multiple kernels are

executed within the same critical section, as shown in Fig. 1(b),

then durations of later kernels may be significantly reduced.
2

1
The full experiment is described in more detail in Sec. 5.1.

2
Note that, as illustrated later in Fig. 5, kernel A is skipped for certain image res-

olutions. Thus, kernel B is the first kernel executed for some resolutions, and the

99.9th
-percentile measurements for kernel B do not decrease due to access grouping.

https://doi.org/10.1145/3696355.3696368
https://doi.org/10.1145/3696355.3696368
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Table 1: Duration (in microseconds) of five GPU kernels, as
99.9th-percentile measurements from the CPU.

Configuration A B C D E

No grouping 150 152 191 150 182

All grouped 153 150 90 48 76

1.1 The Trade-Off: Overhead versus Blocking
The choice of critical section granularity thus exposes a trade-off.

Separating discrete resource accesses, like GPU kernels, into unique

critical sections leads to additional overhead. From the perspective

of a single task, it is better to group accesses into longer critical sec-

tions: there is less time spent waiting to regain use of the resource

and lower overhead for subsequent accesses.

Unfortunately, when one task is granted mutually exclusive

use of a resource, another higher-priority task may suffer priority-
inversion blocking (pi-blocking) if it must wait to use that resource. If

resource accesses of one task are grouped into fewer, longer critical

sections, higher-priority tasks may be subject to more pi-blocking,

possibly making them unscheduleable due to missed deadlines.

However, for each task there is a (usually non-zero) amount of

pi-blocking it can tolerate before becoming unscheduleable. If the

added pi-blocking due to grouping lower-priority tasks’ accesses

into larger critical sections does not exceed this tolerance, then

schedulability is not violated and lower-priority tasks experience

less overhead and thus lower response times.

In this paper, we expose this trade-off via an extended task model

that includes the durations of individual resource accesses rather

than critical sections. Doing so enables schedulability to factor into

the decision of how to group accesses into critical sections. We call

such a grouping valid if schedulability can be guaranteed given that

grouping, and an algorithm to group accesses into critical sections

optimal if it is guaranteed to find a valid grouping if one exists. In

this paper, we present such an optimal algorithm. Before detailing

our contributions, we first introduce related work.

1.2 Related Work
A common approach tomanaging accesses to shared resources is via

a synchronization protocol. For task systems scheduling based on

fixed task priorities, the Priority Inheritance Protocol (PIP) and the

Priority Ceiling Protocol (PCP) [22] provide mechanisms to ensure

mutual exclusion, although the implementations require modifica-

tions to the kernel to support the inheritance of a blocked task’s

scheduling priority. Considering that some accesses are shorter

than others, prior work has also sought to explore whether waiting

by spinning or by suspending is more appropriate [10].

The possibility of incurred overhead from sources like synchro-

nization protocols or lost cache affinity has led to limited-preemptive
scheduling, which seeks a middle ground between the generally

higher schedulability offered by fully preemptive systems and the

predictability of non-preemptive systems. Under limited-preemptive

scheduling, tasks may have regions of non-preemptive execution;

if such regions are at least as long as any critical section, no syn-

chronization protocol is needed to manage shared-resource use.

Previous limited-preemption approaches include arbitrating pre-

emptions based on priority [16, 17, 21, 24] or allowing non-preemp-

tive regions at either fixed locations (e.g., deferring preemption

until a given preemption point) [6, 11, 14] or floating locations for

a known duration [4, 5, 25]; some prior work has explored a com-

bination of models [12, 13, 15, 26]. Limited-preemptive scheduling

has also been used to decrease energy usage [23]. Each of these

prior works assumes that a task may execute non-preemptively for

some duration, which may cause pi-blocking.

Unfortunately, non-preemptive execution may cause pi-blocking

even for tasks that do not use any shared resources. Furthermore,

non-preemptive execution on the CPU is not always the most ap-

propriate approach. For example, while one task performs a com-

putation on the GPU, another task may execute on the CPU.

In contrast, we consider fully preemptive tasks that are subject to

the PIP. Unlike the non-preemptive regions of limited-preemption

scheduling, under the PIP a resource-holding task is preemptable

and pi-blocking is incurred only by some tasks in the system. The

concept of a longest non-preemptive region from prior work [25, 26]

provides a valuable starting point for determining the maximum du-

ration of pi-blocking that each task can tolerate without an adverse

impact on schedulability; our focus is on how to group resource

accesses into critical sections of at most that duration.

1.3 Contributions
The contributions presented in this paper are threefold:

(1) We propose an extended task model that includes the du-

ration of each shared-resource access and illustrate with

simple examples how the choice of critical-section granular-

ity impacts schedulability (Sec. 3).

(2) We leverage prior work to compute a per-task bound on

critical-section durations such that schedulability is not vio-

lated and present an optimal algorithm for grouping accesses

into critical sections (Sec. 4).

(3) We demonstrate via a schedulability study that our algo-

rithm results in better schedulability than either grouping

all accesses into a single critical section or performing each

access within its own critical section (Sec. 5).

Although the work presented herein is motivated by GPU-using

tasks, our approach is not specific to GPU-equipped platforms.

Rather, our algorithm is applicable for any type of shared resource.

1.4 Organization
The remainder of this paper is organized as follows. In Sec. 2,

we discuss needed background on fixed-priority scheduling and

the PIP, as well as the results we leverage from prior work on

limited-preemptive scheduling. We introduce our extended model

in Sec. 3 and demonstrate the impact of critical-section granular-

ity on schedulability via an example. In Sec. 4, we describe our

access-grouping algorithm and prove its optimality. We detail our

experimental evaluation in Sec. 5 before concluding in Sec. 6.

2 BACKGROUND
In this section, we discuss existing task and shared-resource models,

along with the scheduling algorithm and analysis upon which we

build our work.
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2.1 Task Model
We consider a set 𝜏 = {𝜏1, 𝜏2, ..., 𝜏𝑛} of 𝑛 tasks, where each task 𝜏𝑖
releases a (possibly infinite) sequence of jobs, 𝐽𝑖,1, 𝐽𝑖,2, ...; we refer

to a generic job of task 𝜏𝑖 as 𝐽𝑖, 𝑗 .

We consider sporadic tasks, i.e., a period 𝑇𝑖 specifies the lower
bound on the separation between job releases of task 𝜏𝑖 . Each job 𝐽𝑖, 𝑗
must complete execution by a deadline 𝐷𝑖 ≤ 𝑇𝑖 time units after its

release. In the absence of shared resources, we represent a task as the

three-tuple 𝜏𝑖 = (𝑇𝑖 ,𝐶𝑖 , 𝐷𝑖 ), where 𝐶𝑖 is the worst-case execution
time (WCET) of each job 𝐽𝑖, 𝑗 . If 𝑇𝑖 = 𝐷𝑖 (i.e., for implicit-deadline
tasks) we can simplify this to 𝜏𝑖 = (𝑇𝑖 ,𝐶𝑖 ).

2.2 Resource Model
Given GPU-equipped platforms as our motivation, we assume a

single shared GPU as a shared resource.
3
When job 𝐽𝑖, 𝑗 requires

use of the shared resource, it issues an acquisition request to a

synchronization protocol managing access to that resource. Job 𝐽𝑖, 𝑗
acquires the resource once the request is satisfied, and then holds
the resource (i.e., is guaranteed mutually exclusive access to that

resource) until it issues a release request.
The instructions executed while a job holds the resource com-

prise a critical section. As CV applications typically perform the

same processing steps repeatedly on a sequence of input images,

we thus represent a task as an alternating sequence of unprotected
sections and critical sections of code. We let 𝐿𝜎

𝑖
be the maximum du-

ration of the 𝜎th critical section of job 𝐽𝑖, 𝑗 , and define 𝐿𝑖 = max𝜎 𝐿𝜎
𝑖
.

Synchronization protocols incur overhead for both the acquire
and release procedures. For simplicity, we define O as the total

overhead added due to a single critical section. We assume that O
contributes to blocking of other tasks and thus include it in 𝐿𝑖 .

2.3 Fixed-Priority Scheduling
Given its simplicity and popularity [2], we focus on fixed-priority

scheduling for uniprocessor platforms. For ease of notation, we

assume that tasks are indexed in order of priority, i.e., task 𝜏𝑖 has
higher priority than task 𝜏𝑖+1.

Let R𝑖 be the worst-case response time for task 𝜏𝑖 , and let hp(𝜏𝑖 )
be the set of tasks with priority higher than that of task 𝜏𝑖 . Under

fixed-priority scheduling, the execution requirement for tasks in

{𝜏𝑖 } ∪ hp(𝜏𝑖 ) in the time interval from 0 to 𝑡 ,W𝑖 (𝑡), is given by

W𝑖 (𝑡) = 𝐶𝑖 +
∑︁

𝜏ℎ∈hp(𝜏𝑖 )

⌈
𝑡

𝑇ℎ

⌉
·𝐶ℎ . (1)

Therefore, R𝑖 is the smallest 𝑡 such thatW𝑖 (𝑡) = 𝑡 [18].

2.4 Limited-Preemptive Scheduling
Yao et al. [25, 26] used Eq. (1) to derive the extent to which a task

could incur blocking without a deadline miss, termed the blocking
tolerance of task 𝜏𝑖 and denoted 𝛽𝑖 , as:

𝛽𝑖 = max

𝑡 ∈TS(𝜏𝑖 )
{𝑡 −𝑊𝑖 (𝑡)}, (2)

where TS is the testing set of values of 𝑡 up to 𝑡 = 𝑇𝑖 . This set can be

reduced to integer multiples of periods [18] or further trimmed [7],

still containing a pseudo-polynomial number of values to test.

3
We leave to future work the extension to multiple resources.

The blocking tolerance can be used to determine highest possi-

ble pi-blocking that does not impact schedulability. In the context

of limited-preemptive scheduling, pi-blocking is caused by non-

preemptive regions of lower-priority tasks [25, 26]. When using a

locking protocol to synchronize shared-resource usage, pi-blocking

is caused by critical sections. We therefore let 𝑄𝑖 denote the upper

bound on critical-section duration for task 𝜏𝑖 that maintains schedu-

lability; we require 𝐿𝑖 ≤ 𝑄𝑖 . In Sec. 4.2 we detail how to compute

𝑄𝑖 given our extended task model.

2.5 Priority Inheritance Protocol
Weutilize the Priority Inheritance Protocol (PIP) as our synchroniza-

tion protocol [22].
4
The PIP enforces mutual exclusion by allowing

a lower-priority resource-holding task to inherit the priority of a

higher-priority task waiting to acquire the resource. In the absence

of such a blocked task, higher-priority work that does not use the

resource executes as normal, preempting the resource-holding task.

Using the PIP can cause two types of pi-blocking, described here

in terms of a higher-priority task 𝜏𝑖 that may be blocked due to a

lower-priority task.

Definition 2.1. Task 𝜏𝑖 experiences direct blocking while a lower-

priority task holds the resource that 𝜏𝑖 requires.

Definition 2.2. Task 𝜏𝑖 experiences push-through blocking while

a lower-priority task is executing with an inherited priority higher

than that of 𝜏𝑖 from a task directly blocked on the resource.

Pi-blocking can be accounted for in schedulability analysis with

a small update to Eq. (1) to include the worst-case pi-blocking, 𝐵𝑖 ,

incurred by task 𝜏𝑖 [7]:

W𝑖 (𝑡) = 𝐵𝑖 +𝐶𝑖 +
∑︁

𝜏ℎ∈hp(𝜏𝑖 )

⌈
𝑡

𝑇ℎ

⌉
·𝐶ℎ . (3)

We make use of the following properties of the PIP from Sha et

al. [22], reworded to fit the terminology used in our work:

P1 A job 𝐽𝑖, 𝑗 can be blocked by a lower-priority job only if that

job is executing within a critical section that could block

𝐽𝑖, 𝑗 (directly or with push-through blocking) when 𝐽𝑖, 𝑗 is

released. (Lemma 1 in [22])

P2 A job 𝐽𝑖, 𝑗 can experience push-through blocking caused

by priority inheritance for a specific resource only if that

resource is used both by a job which has priority lower than

that of 𝐽𝑖, 𝑗 and by a job which has or can inherit priority

equal to or higher than that of 𝐽𝑖, 𝑗 . (Lemma 4 in [22])

P3 A job 𝐽𝑖, 𝑗 can encounter blocking by at most one critical

section per resource in the set of all the critical sections

of lower or equal priority jobs which could block 𝐽𝑖, 𝑗 by

using that resource (through either direct or push-through

blocking). (Lemma 5 in [22])

We can simplify some of these properties for specific cases:

P4 A task cannot be blocked if no lower-priority task uses the

resource.

P5 A task cannot be blocked if it does not use the resource and

there is no higher-priority task that does use the resource.

4
In a system with only a single resource, both the PIP and the PCP [22] perform

identically.
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Task 𝜏𝑖

First critical 
section of task 𝜏𝑖
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unprotected section
critical section

lock request
unlock request

access segment
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𝛼𝑖
1 𝛾𝑖

1 𝛼𝑖
2 𝛼𝑖

3𝛾𝑖
2

Figure 2: The decomposition of a task and a critical section.

In Sec. 4, we use these properties to calculate the bound on critical-

section duration𝑄𝑖 of each task 𝜏𝑖 . First, we introduce our extended

task model that enables choice in critical-section granularities.

3 MODELING INDIVIDUAL RESOURCE
ACCESSES

We now introduce our request model with the corresponding mod-

ifications to an extended task model. Then, we use example task

sets to demonstrate the value of modeling resource accesses.

3.1 Request Model
The resource model discussed in Sec. 2.2 represents a job as an

alternating sequence of unprotected sections and critical sections,

as shown in Fig. 2(a). However, it is possible for a job to make

multiple accesses to a shared resource while holding that resource.

Therefore, we extend the model to expose the possibly multiple

individual accesses that may occur during a single critical section.

We let 𝛼𝜈
𝑖
denote the 𝜈th resource access (for 𝜈 ≥ 1) made by

a job 𝐽𝑖, 𝑗 , and let |𝛼𝜈
𝑖
| be the duration of 𝛼𝜈

𝑖
. We define 𝛾𝜈

𝑖
as the

corresponding 𝜈th non-access segment (with duration |𝛾𝜈
𝑖
|); 𝛾0

𝑖

comprises instructions before 𝛼1
𝑖
, and 𝛾𝜈

𝑖
immediately follows 𝛼𝜈

𝑖
.

A critical section is thus a contiguous sequence of access segments

with interleaving non-access segments, as shown in Fig. 2(b).

3.2 Extended Task Model
Given this access-focused viewpoint, a task 𝜏𝑖 corresponds to the

alternating sequence 𝛾0
𝑖
, 𝛼1

𝑖
, 𝛾1
𝑖
, 𝛼2

𝑖
, 𝛾2
𝑖
, .... Any contiguous sequence

of segments 𝛼
𝑝

𝑖
, 𝛾

𝑝

𝑖
, ..., 𝛼

𝑞

𝑖
for 𝑝 ≤ 𝑞 can be grouped into a single

critical section as long as no segment is part of two critical sections.

We now expand our task representation to the four-tuple 𝜏𝑖 =

(𝑇𝑖 , Γ𝑖 , 𝐴𝑖 , 𝐷𝑖 ), where Γ𝑖 is a list of the durations of non-access seg-
ments 𝛾0

𝑖
, 𝛾1
𝑖
, ..., and 𝐴𝑖 is a list of the durations of access segments

𝛼1
𝑖
, 𝛼2

𝑖
, .... If 𝑇𝑖 = 𝐷𝑖 , we can simplify our task representation to

𝜏𝑖 = (𝑇𝑖 , Γ𝑖 , 𝐴𝑖 ). We let 𝐶𝑖 be the summed durations of all segments

in Γ𝑖 and 𝐴𝑖 , plus the overhead of each critical section, assuming a

given grouping of accesses into critical sections. We denote by |𝐴𝑖 |
the number of access segments of task 𝜏𝑖 .

Example 3.1. Consider a task set comprising two tasks, which

make one and three accesses, respectively, each for 10 time units:

𝜏1 = (140, [30, 30], [10]) and 𝜏2 = (250, [20, 10, 20, 20], [10, 10, 10]).
There are four possible groupings of accesses by task 𝜏2 into critical

sections.

𝜏1

(a)

(b)

(c)

𝜏2

unprotected section
critical section

lock request
unlock request

access segment
non-access segment

Figure 3: The task set described in Ex. 3.1: (a) divided into
segments, (b) with one access per critical section, and (c) with
all accesses grouped.

The task set from Ex. 3.1 is illustrated in Fig. 3, along with two

possible groupings of each task’s accesses into critical sections; we

explore these two extremes of groupings next.

3.3 The Impact of Critical-Section Granularity
on Schedulability

We now explore the impact of access grouping on schedulability us-

ing the example tasks introduced in Sec. 3.2. We will see that if each

access composes its own critical section, then the schedulability

test fails for this simple task set.

Example 3.2. Consider the same task set as in Ex. 3.1 and assume

that no resource accesses are grouped, as illustrated in Fig. 3(b);

each access composes its own critical section. For this system, we

assume that the overhead is fixed, i.e., does not depend on which

task is acquiring or releasing the lock, with O = 3 time units.

Task 𝜏1 makes one access to the shared resource and thus has

one critical section with duration 𝐿1 = O + |𝛼1
1
| = 3 + 10 = 13 time

units. Thus, 𝐶1 = |𝛾0
1
| + 13 + |𝛾1

1
| = 30 + 13 + 30 = 73 time units.

Similarly, each of the three critical sections of task 𝜏2 has duration

O + |𝛼𝜈
2
| = 3 + 10 = 13 time units and thus 𝐶2 =

∑
𝜈 |𝛾𝜈2 | + 3 · 13 =

(20 + 10 + 20 + 20) + 39 = 109 time units.

Let task 𝜏1 have higher priority. Then, using Eq. (3) for task 𝜏1, we

compute W1 (𝑡) = 𝐵1 +𝐶1 = 13 + 73, so R1 = 86. As R1 < 𝐷1 = 140,

all jobs of 𝜏1 meet their deadlines.

Task 𝜏2 has the lowest priority, so 𝐵2 = 0. We solve W2 (𝑡) =

109+
⌈

𝑡
140

⌉
·73 to get R2 = 255 > 250 = 𝐷2. The worst-case response

time exceeds the deadline; the schedulability condition has been

violated.

In Ex. 3.2, the overhead due to repeated acquisition and release

requests results in a failed schedulability condition. Rather than

task 𝜏2 having three critical sections, we could instead group these

accesses into a single longer critical section.

Example 3.3. Consider the same task set as in Ex. 3.2, except

that task 𝜏2 has all accesses grouped into a single critical section,

as shown in Fig. 3(c). Including the time between accesses, this

grouped critical section has duration 60 time units, plus overhead,

for 𝐿2 = 63 time units. Therefore, for task 𝜏1 we now haveW1 (𝑡) =
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𝐵1 +𝐶1 = 63 + 73, so R1 = 136 < 140 = 𝐷1 and jobs of task 𝜏1 still

meet their deadlines.

As task 𝜏2 has two fewer critical sections, it incurs less overhead,

so we now have 𝐶2 = |𝛾0
2
| + 𝐿2 + |𝛾3

2
| = 20 + 63 + 20 = 103 time

units. Again 𝐵2 = 0, so we solve W2 (𝑡) = 𝐵2 + 𝐶2 +
⌈
𝑡
𝑇𝑖

⌉
· 𝐶1 =

0+ 103+
⌈

𝑡
140

⌉
· 73 to find R2 = 249 < 250 = 𝐷2; jobs of task 𝜏2 meet

their deadlines, and the task set is therefore schedulable.

In Ex. 3.3, we showed that grouping accesses into a single critical

section can make an otherwise unschedulable task set schedulable.

We now consider an example that is only schedulable if accesses

are not all grouped.

Example 3.4. Consider a task set comprised of two tasks, 𝜏1 =

(130, [30, 30], [10]) and 𝜏2 = (260, [20, 10, 20, 20], [10, 10, 10]), with
O = 3 time units. This is identical to the task set from Exs. 3.1–3.3

except that the tasks have different periods.

If all accesses are grouped, then R1 = 136 > 130 = 𝐷1; the task

set is not schedulable. If no accesses are grouped, R1 = 86 < 𝐷1

and R2 = 255 < 260 = 𝐷2, and the task set is schedulable.

The above examples illustrate the challenge in the trade-off of

overhead versus blocking incurred by grouping accesses into critical

sections: simply always grouping or never grouping accesses will

not be the best approach for all tasks systems.

Instead, we must base the decision of critical-section granularity

on properties of a given task set. Like work for systems using

limited-preemptive scheduling by Yao et al. [25, 26], we leverage
the properties of fixed-priority scheduling to compute the longest

possible critical section for each task, discussed next.

4 GROUPING ACCESSES INTO CRITICAL
SECTIONS

We now introduce our approach for optimally grouping accesses

into critical sections. We start in Sec. 4.1 by presenting our high-

level algorithm that considers each task 𝜏𝑖 in priority order, using

the bound 𝑄𝑖 to group accesses into critical sections. In Sec. 4.2 we

extend previous work by Yao et al. [25, 26] to calculate each𝑄𝑖 term,

and in Sec. 4.3 we provide an optimal algorithm to group accesses

for a given task 𝜏𝑖 . Finally, in Sec. 4.4, we show that the overall

algorithm is optimal and discuss its computational complexity.

4.1 Algorithm Overview
Our goal is to combine accesses in a manner that maximally reduces

overhead without causing any task to miss a deadline due to the

pi-blocking caused by the (possibly larger) critical sections. Recall

from the examples in Sec. 3.3 that changing the number of critical

sections of 𝜏𝑖 (and thus the number of times overhead is incurred)

also impacts 𝐶𝑖 . We present in Alg. 1 an order for making the

necessary computations, creating the critical sections, and updating

the WCET values. We illustrate this with an example here before

detailing specific computations in Secs. 4.2 and 4.3.

Example 4.1. Consider the same task set used in Exs. 3.1–3.3:

𝜏1 = (140, [30, 30], [10]) and 𝜏2 = (250, [20, 10, 20, 20], [10, 10, 10]),
with O = 3. As both tasks make at least one access to the shared

resource, the condition in Line 4 is true for both, and their accesses

are grouped into critical sections.

Algorithm 1 Optimally grouping accesses into critical sections for

each task 𝜏𝑖 , including the corresponding update to 𝐶𝑖 .

1: procedure SetCriticalSections(𝜏 : set of tasks ordered by decreasing priority,

O: overhead)

2: for 𝑖 = 1 to 𝑛 do ⊲ Consider each task 𝜏𝑖 ∈ 𝜏

3: Compute𝑄𝑖 using Thm. 4.5

4: if 𝐴𝑖 ≠ ∅ then
5: criticalSections = GroupAccesses(𝛼𝑖 , 𝛾𝑖 ,𝑄𝑖 , O)

6: if criticalSections == NULL then
7: return “Not schedulable”

8: 𝐶𝑖 += O · |criticalSections |
9: Compute 𝛽𝑖 using Eq. (1) and Eq. (2)

Alg. 1 starts with task 𝜏1, and computes 𝑄1 = ∞ (Line 3). Group-

ing accesses into critical sections occurs in Line 5; task 𝜏1 has a

single access which is converted to a single critical section. The call

to GroupAccesses is successful, so the check in Line 6 does not

report the taskset unschedulable. The critical section choice results

in 𝐶1 = 73 (Line 8). The blocking 𝜏1 can tolerate is computed by

Eq. (2) as 𝛽1 = max𝑡 ∈TS(𝜏1 ) {𝑡 −𝑊1 (𝑡)} = max𝑡 ∈TS(𝜏1 ) {𝑡 − 73} =
140 − 73 = 67 (Line 9); this will be used when considering task 𝜏2.

For task 𝜏2, 𝑄2 = 67 (Line 3). The three accesses made by 𝜏2
can all be grouped into a single critical section with a duration

of 𝐿2 = 63 < 67 (Line 5). This results in 𝐶2 = 103 (Line 8) and

𝛽2 = max𝑡 ∈TS(𝜏2 ) {𝑡−𝑊2 (𝑡)} = max𝑡 ∈TS(𝜏2 ) {𝑡−(𝐶2+
⌈
𝑡
𝑇1

⌉
·𝐶1)} =

250 − (103 +
⌈
250

140

⌉
· 73) = 1 (Line 9).

As discussed in Ex. 3.3, this grouping of tasks’ accesses into

critical sections makes this task set schedulable.

Task WCETs depend on the number of critical sections, and are

in turn used in the computations of 𝑄𝑖 and 𝛽𝑖 . The order of these

computations matters: accesses grouped using incorrect WCET val-

ues could result in missed deadlines or overly conservative critical

sections. In Sec. 4.4, we return to this question of correctness and

demonstrate that Alg. 1 performs calculations in the required order.

4.2 Computing the Longest Allowable Critical
Sections

We leverage prior work on bounding the length of non-preemptive

regions [25, 26]. In our context, however, tasks do not execute non-

preemptively, so we instead account for sources of blocking (direct

or push-through) that may be incurred when computing 𝑄𝑖 .

Let 𝒽 (resp., 𝓁) be the index of the highest-priority (resp., lowest-

priority) task that accesses the resource. We first bound the max-

imum critical-section duration for each task with priority higher

than or equal to that of 𝜏𝒽 or lower than that of 𝜏𝓁.

Lemma 4.2. The maximum critical-section duration for a task 𝜏𝑖 ,
𝑖 ≤ 𝒽, that maintains schedulability is unbounded. That is,

∀𝑖, 𝑖 ≤ 𝒽, 𝑄𝑖 = ∞.

Proof. By definition of𝒽, no task with higher priority than that

of task 𝜏𝑖 uses the resource. Thus, by Rule P5, any task with priority

higher than that of 𝜏𝑖 cannot experience pi-blocking. Therefore, for

a task 𝜏𝑖 with 𝑖 ≤ 𝒽, there is no constraint on 𝑄𝑖 , so 𝑄𝑖 = ∞. □
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𝑘 = 𝒽: 𝐿𝒽+1 ≤ 𝛽𝒽 ∧ 𝐿𝒽+2 ≤ 𝛽𝒽 ∧ ... ∧ 𝐿𝓁−1 ≤ 𝛽𝒽 ∧ 𝐿𝓁 ≤ 𝛽𝒽
𝑘 = 𝒽 + 1: 𝐿𝒽+2 ≤ 𝛽𝒽+1 ∧ ... ∧ 𝐿𝓁−1 ≤ 𝛽𝒽+1 ∧ 𝐿𝓁 ≤ 𝛽𝒽+1
... ... ∧ ... ∧ ...

𝑘 = 𝓁 − 2: 𝐿𝓁−1 ≤ 𝛽𝓁−2 ∧ 𝐿𝓁 ≤ 𝛽𝓁−2
𝑘 = 𝓁 − 1: 𝐿𝓁 ≤ 𝛽𝓁−1

Table 2: Expansion of expression
∧

𝑘<𝑖≤𝓁 (𝐿𝑖 ≤ 𝛽𝑘 ).

Lemma 4.3. The maximum critical-section duration for a task 𝜏𝑖 ,
𝑖 > 𝓁, that maintains schedulability is unbounded. That is,

∀𝑖, 𝑖 > 𝓁, 𝑄𝑖 = ∞.

Proof. A task 𝜏𝑖 with 𝑖 > 𝓁 does not use the resource (by the

definition of 𝓁). Therefore, no task with priority higher than that of

𝜏𝑖 could be blocked by 𝜏𝑖 (by Rule P1). Thus, there is no constraint

on 𝑄𝑖 , so 𝑄𝑖 = ∞. □

We now bound the maximum duration of critical sections for

tasks with priorities in between those of 𝜏𝒽 and 𝜏𝓁. Recall that 𝐵𝑘
is the maximum pi-blocking that 𝜏𝑘 may experience, and 𝛽𝑘 is the

maximum pi-blocking 𝜏𝑘 can tolerate; we must ensure 𝐵𝑘 ≤ 𝛽𝑘 .

Lemma 4.4. The maximum critical-section duration for a task 𝜏𝑖 ,
𝒽 + 1 ≤ 𝑖 ≤ 𝓁, that maintains schedulability is given by

𝑄𝑖 = min{𝑄𝑖−1, 𝛽𝑖−1}.

Proof. To bound the maximum critical-section duration for

task 𝜏𝑖 , we start by focusing on possible pi-blocking experienced by

a given task 𝜏𝑘 due to critical sections of any task 𝜏𝑖 for𝒽+1 ≤ 𝑖 ≤ 𝓁.
By Rule P1, task 𝜏𝑘 can only be blocked by a lower-priority task

that uses the resource, so we consider 𝑘 < 𝑖 ≤ 𝓁. If task 𝜏𝑘 uses the

resource, it could experience direct blocking. Additionally, if 𝒽 ≤ 𝑘

then task 𝜏𝑘 could experience push-through blocking, regardless of

whether it uses the resource.

Because we consider only one resource, by Rule P3, task 𝜏𝑘 can be

blocked by at most one critical section of task 𝜏𝑖 . Thus, the blocking

task 𝜏𝑘 may incur is given by

𝐵𝑘 = max

𝑘<𝑖≤𝓁
𝐿𝑖 .

Recall that by the definition of 𝛽𝑘 , we must ensure that 𝐵𝑘 ≤ 𝛽𝑘 .

Therefore, we require

max

𝑘<𝑖≤𝓁
𝐿𝑖 ≤ 𝛽𝑘 ,

which can be rewritten as∧
𝑘<𝑖≤𝓁

(𝐿𝑖 ≤ 𝛽𝑘 ).

The expression 𝐿𝑖 ≤ 𝛽𝑘 is shown in Tbl. 2 for all relevant values

of 𝑖 for a given 𝑘 ; we utilize this table to shift our focus from a

task 𝜏𝑘 that may experience pi-blocking to the constraints on the

maximum critical-section duration 𝐿𝑖 of one of those tasks 𝜏𝑖 that

may block 𝜏𝑘 . Thus, for 𝒽 + 1 ≤ 𝑖 ≤ 𝓁,∧
𝒽≤𝑘<𝑖

𝐿𝑖 ≤ 𝛽𝑘 ,

which yields

𝐿𝑖 ≤ min

𝒽≤𝑘<𝑖
𝛽𝑘 .

As we require 𝐿𝑖 ≤ 𝑄𝑖 , we therefore have

𝑄𝑖 = min

𝒽≤𝑘<𝑖
𝛽𝑘 . (4)

Becausemin𝒽≤𝑘<𝑖 𝛽𝑘 is the smaller ofmin𝒽≤𝑘<𝑖−1 𝛽𝑘 and 𝛽𝑖−1,
we therefore have

𝑄𝑖 = min{ min

𝒽≤𝑘<𝑖−1
{𝛽𝑘 }, 𝛽𝑖−1}.

Substituting in 𝑄𝑖−1 using Eq. (4), the maximum critical-section

duration for a task 𝜏𝑖 , 𝒽 + 1 ≤ 𝑖 ≤ 𝓁, that maintains schedulability

is given by

𝑄𝑖 = min{𝑄𝑖−1, 𝛽𝑖−1}. □

Theorem 4.5. The maximum critical-section duration for a task 𝜏𝑖
that maintains schedulability is

𝑄𝑖 =


∞ 𝑖 ≤ 𝒽

min{𝑄𝑖−1, 𝛽𝑖−1} 𝒽 + 1 ≤ 𝑖 ≤ 𝓁

∞ 𝑖 > 𝓁

Proof. This holds given Lem. 4.2, Lem. 4.3, and Lem. 4.4. □

Corollary 4.6. Given 𝑄𝑖−1 and 𝛽𝑖−1, then 𝑄𝑖 can be computed
in constant time.

Now that we have shown how to compute 𝑄𝑖 , we present an

algorithm for choosing how to group resource accesses into critical

sections based on that bound on critical-section duration.

4.3 Choice of Critical-Section Granularity
Any combination of resource accesses into critical sections must

ensure that 𝐿𝑖 ≤ 𝑄𝑖 for each task 𝜏𝑖 . As illustrated in Sec. 3.3, the

overhead incurred for each critical section can affect schedulability.

Minimizing the number of critical sections thereby minimizes the

added overhead, resulting in shorter response times for 𝜏𝑖 and any

lower-priority tasks. We now present an algorithm for aggregating

resource accesses into critical sections and prove that our algorithm

minimizes the number of critical sections.

4.3.1 Greedy Algorithm. As shown in Alg. 2, our algorithm greed-

ily groups resource accesses into critical sections for task 𝜏𝑖 based

on the provided set of non-access durations Γ𝑖 , set of access dura-
tions 𝐴𝑖 , maximum critical-section duration 𝑄𝑖 , and per-critical-

section overhead O. Alg. 2 produces a mapping from a critical-

section number to the corresponding access indices. If no mapping

is possible, Alg. 2 returns NULL.
We illustrate the behavior of this algorithm with an example.

Example 4.7. Consider 𝜏𝑖 = (150, [3, 5, 2, 2, 1], [8, 2, 1, 6]), as de-
picted in Fig. 4(a). We now trace a call to GroupAccesses(Γ𝑖 , 𝐴𝑖 ,

𝑄𝑖 , O) assuming 𝑄𝑖 = 20 and O = 1. First, Alg. 2 checks if any
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Algorithm 2 Greedy algorithm for grouping accesses into critical

sections for task 𝜏𝑖 .

1: procedure GroupAccesses(Γ𝑖 ,𝐴𝑖 ,𝑄𝑖 , O)

2: for 𝜈 = 1 to |A𝑖 | do ⊲ verify that no individual access+overhead exceeds𝑄𝑖

3: if O + |𝛼𝜈
𝑖
| > 𝑄𝑖 then

4: return NULL
5: criticalSections = {} ⊲ map critical section index to list of access indices

6: 𝜎 = 1

7: criticalSections[𝜎] = [1] ⊲ initialize first critical section to contain 𝛼1

𝑖

8: currentDuration = O + |𝛼1

𝑖 |
9: for 𝜈 = 2 to |A𝑖 | do ⊲ consider access 𝛼𝜈

𝑖

10: temp = currentDuration + |𝛾𝜈−1
𝑖

| + |𝛼𝜈
𝑖
|

11: if temp ≤ 𝑄𝑖 then
12: criticalSections[𝜎] += [𝜈]

13: currentDuration = temp ⊲ include 𝛼𝜈
𝑖
in this critical section

14: else
15: 𝜎 += 1

16: criticalSections[𝜎] = [𝜈]

17: currentDuration = O + |𝛼𝜈
𝑖
| ⊲ put 𝛼𝜈

𝑖
in a new critical section

18: return criticalSections

single-access critical section would exceed 𝑄𝑖 (Lines 2–4); if a sin-

gle access plus the overhead is larger than 𝑄𝑖 , it is not possible

to assign accesses to critical sections, and the algorithm returns

NULL.

Next, the algorithm initializes an empty map (Line 5) and assigns

access 𝛼1
𝑖
to the first critical section (Lines 6–7). So far, we have

currentDuration = O+ |𝛼1
𝑖
| = 1+8 = 9 (Line 8). We must account for

one duration of overhead for each critical section; future accesses

added to this same critical section do not incur additional overhead.

For each additional access, Alg. 2 checks if the next access (and

the intermediate non-access segment) can be included in the current

critical section (Lines 9–17). For 𝜈 = 2, temp = 9 + |𝛾𝜈−1
𝑖

| + |𝛼𝜈
𝑖
| =

9 + |𝛾1
𝑖
| + |𝛼2

𝑖
| = 9 + 5 + 2 = 16 (Line 10). This does not exceed 𝑄𝑖

(Line 11), so access 𝛼2
𝑖
(and the intermediate non-access segment𝛾1

𝑖
)

are added to the critical section (Line 12) and its duration updated

(Line 13). This process is repeated for 𝜈 = 3, for which temp =

16 + 2 + 1 = 19 ≤ 20; access 𝛼3
𝑖
is also added to the first critical

section.

For 𝜈 = 4, as temp = 19 + 2 + 6 > 20, access 𝛼4
𝑖
becomes the first

access in a new critical section. Alg. 2 updates the critical section

number (Line 15), adds this access to the map (Line 16), and sets

the current size of this new critical section to O + |𝛼4
𝑖
| = 7 (Line 17).

4.3.2 Proving the Greedy Algorithm is Optimal. We call an approach

for assigning accesses to critical sections for a given task 𝜏𝑖 optimal
if it results in the minimum number of critical sections such that

no critical-section duration exceeds 𝑄𝑖 . We leverage this in Sec. 4.4

to show the optimality of Alg. 1.

In order to show that Alg. 2 is optimal, we compare a solution

from our greedy algorithm to an arbitrary optimal solution to show

that after the completion of each critical section, Alg. 2 has assigned

at least as many resource accesses as the optimal solution. We

illustrate this with an example and formalize this observation with

Lem. 4.9 and its proof. Then, we show that this fact allows us to

prove that the number of critical sections found with our greedy

approach is at most the number found by any optimal solution,

showing that the greedy algorithm is itself optimal.

Example 4.8 (cont’d). Note that for 𝑄𝑖 = 20 and O = 1 task 𝜏𝑖
must have at least two critical sections, as combining all accesses

(a)

(b)

(c)

unprotected section
critical section

lock request
unlock request

access segment
non-access segment

overhead

𝛼5
1 𝛾5

1 𝛼5
2 𝛼5

3𝛾5
2𝛾5

0 𝛼5
4𝛾5

3 𝛾5
4

Figure 4: The task described in Ex. 4.7: (a) divided into seg-
ments, (b) with greedy grouping of accesses into critical sec-
tions, and (c) with an arbitrary optimal grouping.

into one critical section would have 𝐿𝑖 = O + |𝛼1
𝑖
| + |𝛾1

𝑖
| + |𝛼2

𝑖
| +

|𝛾2
𝑖
| + |𝛼3

𝑖
| + |𝛾3

𝑖
| + |𝛼4

𝑖
| = 1 + 8 + 5 + 2 + 2 + 1 + 2 + 6 = 27 > 𝑄𝑖 .

As depicted in Fig. 4(b), Alg. 2 results in two critical sections;

the first comprises segments 𝛼1
𝑖
, 𝛾1

𝑖
, 𝛼2

𝑖
, 𝛾2

𝑖
, and 𝛼3

𝑖
. An arbitrary

optimal grouping is depicted in Fig. 4(c), in which the first critical

section contains only the first access: 𝛼1
𝑖
. Thus, in the first critical

section, our greedy approach has assigned at least as many resource

accesses (three) to a critical section as the optimal solution (one).

When comparing through the second critical section, this pattern

continues: both Alg. 2 and the optimal solution have assigned all

four accesses.

To formally reason about our greedy algorithm and an optimal

algorithm, we define some additional notation. Let 𝐺 be the result

given by our greedy algorithm for task 𝜏𝑖 , and let 𝐻 be an optimal

result; that is, 𝐻 gives the minimum number of critical sections and

ensures that 𝐿𝑖 ≤ 𝑄𝑖 . Assume that critical sections are numbered

in the order that they occur during the execution of the task. Let

|𝑋𝜎 | denote the number of resource accesses included in the first 𝜎

critical sections of solution X.

Lemma 4.9. The first 𝜎 critical sections produced by Alg. 2 include
at least as many resource accesses as any arbitrary optimal algorithm.
That is, |𝐺𝜎 | ≥ |𝐻𝜎 |.

Proof. For 𝜎 = 1, the first critical section of both 𝐺 and 𝐻 start

with entry 𝛼1
𝑖
. Suppose for the sake of contradiction |𝐻1 | > |𝐺1 |.

Then the optimal solution was able to keep adding accesses to

its first critical section that were not added to 𝐺 . The sum of any

access durations (plus the duration of intermediate non-access

segments and the overhead) must be at most𝑄𝑖 for this to be a valid

solution. However, Alg. 2 would have also added these accesses,

as it continues adding accesses until doing so would exceed 𝑄𝑖

(Line 11). Therefore |𝐺𝜎 | ≥ |𝐻𝜎 | for 𝜎 = 1.

Suppose that |𝐺𝜎 | ≥ |𝐻𝜎 | holds for all values of 𝜎 through 𝜎 = 𝑥 .

Next we show that this result holds through 𝜎 = 𝑥 + 1. The last

accesses included in the 𝑥 th and (𝑥+1)th critical sections for𝐻 have

indices |𝐻𝑥 | and |𝐻𝑥+1 |, respectively. By the definition of𝐻 , the sum

of the overhead plus the durations of accesses and intermediate

non-accesses from 𝛼
|𝐻𝑥 |+1
𝑖

through 𝛼
|𝐻𝑥+1 |
𝑖

must be at most 𝑄𝑖 .
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Because we assumed |𝐺𝑥 | ≥ |𝐻𝑥 |, the sum of the overhead plus the

durations of accesses and intermediate non-accesses from 𝛼
|𝐺𝑥 |+1
𝑖

to 𝛼
|𝐻𝑥+1 |
𝑖

must be at most 𝑄𝑖 as well, as this is a subset of the

values summed for the optimal solution and each is non-negative.

Therefore, Alg. 2 would have been able to add through access |𝐻𝑥+1 |
as well without exceeding 𝑄𝑖 . Thus, |𝐺𝑥+1 | ≥ |𝐻𝑥+1 |, establishing
that |𝐺𝜎 | ≥ |𝐻𝜎 | holds for all values of 𝜎 through 𝜎 = 𝑥 + 1. □

This greedy stays-ahead proof shows that the greedy approach

in Alg. 2 will always be able to include at least as many accesses

through a given critical section as an optimal solution.

Theorem 4.10. The greedy approach presented in Alg. 2 is optimal.

Proof. Suppose for the sake of contradiction that there is a

different assignment of accesses to critical sections that results in

fewer total critical sections. Let 𝜔 be the index of the last critical

section of 𝐻 . Then, |𝐻𝜔 | = |𝐴𝑖 |; all accesses have been assigned

by the final critical section. By Lem. 4.9, |𝐺𝜔 | ≥ |𝐻𝜔 |, so by the

𝜔 th
critical section of 𝐺 , 𝐺 ’s critical sections have also included all

resource accesses, and it is not possible that𝐺 contains an additional

critical section compared to 𝐻 . Thus, Alg. 2 is optimal. □

When assigning accesses to critical sections, minimizing the

number of critical sections for a task minimizes its WCET.

Lemma 4.11. Given Γ𝑖 , 𝐴𝑖 , 𝑄𝑖 , and O for task 𝜏𝑖 , Alg. 2 produces
an assignment of accesses to critical sections that minimizes 𝐶𝑖 .

Proof. The computation of 𝐶𝑖 depends only on Γ𝑖 , 𝐴𝑖 , and O.
The choice of grouping does not change Γ𝑖 or 𝐴𝑖 . Because Alg. 2

creates the minimum number of critical sections (Thm. 4.10), it

minimizes the addition of overhead O, thus minimizing 𝐶𝑖 . □

We now look at the computational complexity of Alg. 2.

Theorem 4.12. The running time of Alg. 2 for task 𝜏𝑖 is linear in
the number of resource accesses, i.e., 𝑂 ( |𝐴𝑖 |).

Proof. The for-loop in Lines 2–4 iterates at most |𝐴𝑖 | times,

doing a constant amount of work in each iteration, resulting in

𝑂 ( |𝐴𝑖 |). Lines 5–8 add a constant amount of work. The for-loop

in Lines 9–17 iterates at most |𝐴𝑖 | − 1 times, with each iteration

performing a constant amount of work. Thus, in total the second

for-loop requires 𝑂 ( |𝐴𝑖 | − 1) = 𝑂 ( |𝐴𝑖 |) operations. The return

in Line 18 is 𝑂 (1). Thus, in total, Alg. 2 has a running time of

𝑂 ( |𝐴𝑖 |) +𝑂 (1) +𝑂 ( |𝐴𝑖 |) +𝑂 (1) = 𝑂 ( |𝐴𝑖 |). □

4.4 Optimality and Complexity
Now that we have provided details of the computations required for

Alg. 1, we discuss its optimality and computational complexity. We

begin by observing the order inwhich Alg. 1 performs computations

and which values are required to compute the blocking bound.

Lemma 4.13. The WCET values used in the computation of 𝛽𝑖 are
𝐶ℎ for ℎ ≤ 𝑖 .

Proof. By Eq. (1) and Eq. (2), we compute 𝛽𝑖 using only tasks 𝜏ℎ
such that ℎ ≤ 𝑖 . □

Corollary 4.14. The computations in Alg. 1 are performed in the
appropriate order; that is, the values 𝑄𝑖 ,𝐶𝑖 , and 𝛽𝑖 for a given task 𝜏𝑖
depend only on values already computed.

Proof. The computation of𝑄𝑖 in Line 3 is eithermin{𝑄𝑖−1, 𝛽𝑖−1}
or∞ (Thm. 4.5); any required values were computed in the previous

for-loop iteration. The computation of 𝐶𝑖 in Line 8 depends only

on the access grouping in Line 5, which depends only on Γ𝑖 , 𝐴𝑖 , 𝑄𝑖 ,

O, all of which are already known. Finally, 𝛽𝑖 is computed in Line 9

based on 𝐶𝑖 and WCETs computed previously (Lem. 4.13). □

Now that we have shown that Alg. 1 is correct, we show that it is

optimal. Recall that an algorithm for grouping accesses is optimal

if, given that a valid (i.e., schedulability-guaranteeing) grouping

exists, the algorithm is guaranteed to find a valid grouping. We first

consider how different WCET values, 𝐶𝑥 and 𝐶′
𝑥 , for a single task

𝜏𝑥 impact the response time, the bound on critical-section length,

and the bound on incurred blocking for all tasks in the task set.

Lemma 4.15. Consider 𝐶𝑥 and 𝐶′
𝑥 , where 𝐶𝑥 ≤ 𝐶′

𝑥 . Let W
′
𝑖
(𝑡), 𝑄 ′

𝑖
,

and 𝛽′
𝑖
correspond to W𝑖 (𝑡), 𝑄𝑖 , and 𝛽𝑖 calculated with 𝐶′

𝑥 instead of
𝐶𝑥 . Then ∀𝑖 , 𝑄𝑖 ≥ 𝑄 ′

𝑖
and 𝛽𝑖 ≥ 𝛽′

𝑖
.

Proof. For any 𝑖 < 𝑥 , 𝐶𝑥 is not included in Eq. (1), soW𝑖 (𝑡) =
W′

𝑖
(𝑡). Similarly, 𝑄𝑖 = 𝑄 ′

𝑖
and 𝛽𝑖 = 𝛽′

𝑖
.

For 𝑖 = 𝑥 , 𝐶𝑖 +
∑
𝜏ℎ∈hp(𝜏𝑖 )

⌈
𝑡
𝑇ℎ

⌉
·𝐶ℎ ≤ 𝐶′

𝑖
+∑

𝜏ℎ∈hp(𝜏𝑖 )
⌈
𝑡
𝑇ℎ

⌉
·𝐶ℎ ,

so W𝑖 (𝑡) ≤ W𝑖 (𝑡)′. Thus, 𝑄𝑖 ≥ 𝑄 ′
𝑖
and 𝛽𝑖 ≥ 𝛽′

𝑖
.

For 𝑖 > 𝑥 , we have 𝜏𝑥 ∈ hp(𝜏𝑖 ). Because
⌈
𝑡
𝑇𝑥

⌉
· 𝐶𝑥 ≤

⌈
𝑡
𝑇𝑥

⌉
· 𝐶′

𝑥 ,

W𝑖 (𝑡) ≤ W′
𝑖
(𝑡), 𝑄𝑖 ≥ 𝑄 ′

𝑖
, and 𝛽𝑖 ≥ 𝛽′

𝑖
. □

We use this to show the optimality of Alg. 1.

Theorem 4.16. Alg. 1 is optimal.

Proof. Consider 𝑖 = 1. Because 𝜏1 has the highest priority, it

must have index 𝑖 ≤ 𝒽 (by definition). Thus, in Line 3, 𝑄1 = ∞
(Thm. 4.5). If 𝜏1 does not access the shared resource, its WCET is

unchanged. If |𝐴1 | > 0 and a valid access grouping exists, Alg. 2

returns a grouping for 𝜏1 in Line 5. This ensures that the computa-

tion of 𝐶1 in Line 8 results in the minimum possible WCET for 𝜏1
(Lem. 4.11). Because 𝐶1 is minimized, 𝑄𝑘 is maximized for all 𝑘 ≠ 𝑖

(Lem. 4.15).

Suppose the values for𝑄𝑖 ,𝐶𝑖 , and 𝛽𝑖 have been set for all values

through 𝑖 = 𝑥 , with 𝐶𝑖 minimized by the choice of access group-

ing. Thus, if a valid grouping exists, all tasks with 𝑖 ≤ 𝑥 have all

jobs meeting their respective deadlines. Because WCETs of higher

priority tasks have been minimized, 𝑄𝑥 is maximized (Lem. 4.15);

when accesses are grouped into critical sections for 𝜏𝑥 in Line 5,

this is done with the maximum possible 𝑄𝑥 . Thus, if a valid group-

ing exists, Alg. 2 will produce a grouping for 𝜏𝑥 that ensures no

deadline misses for its jobs. As above, this grouping will minimize

𝐶𝑥 (Lem. 4.11) and maximize 𝑄 and 𝛽 for other tasks (Lem. 4.15).

Therefore, if a valid grouping exists, Alg. 1 will produce an access

grouping for every task that ensures no deadline misses. □

Finally, we examine the computational complexity of Alg. 1.

Theorem 4.17. Alg. 1 has pseudopolynomial running time.
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Proof. Alg. 1 begins in Line 2 by iterating over all𝑛 tasks (𝑂 (𝑛)).
For each task 𝜏𝑖 , Lines 3–9 are executed. Consider the first task,

𝜏1. The bound 𝑄1 is computed Line 3 with a constant-time oper-

ation (𝑄1 = ∞, by Thm. 4.5). After a constant-time comparison

in Line 4, any accesses by 𝜏1 are grouped into critical sections in

Line 5, taking 𝑂 ( |𝐴1 |) time (Thm. 4.12). Then 𝐶1 is computed in

Line 8, taking constant time. Finally, 𝛽1 is computed, which takes

pseudopolynomial time [25, 26].

For all remaining tasks, the same computations occur, with

the exception of 𝑄𝑖 , which may require the use of the expres-

sion min{𝑄𝑖−1, 𝛽𝑖−1} (Thm. 4.5). As the tasks are considered in

increasing-index order, both 𝑄𝑖−1 and 𝛽𝑖−1 will already have been

computed in the previous iteration of the for-loop, so the computa-

tion of 𝑄𝑖 is also a constant-time operation (Cor. 4.6).

Thus, in total, Alg. 1 has pseudopolynomial running time. □

5 EXPERIMENTAL EVALUATION
We now discuss our experimental evaluation. We first detail our

experiments that provide the motivation for this work, showing the

possible decrease in access durations as a result of grouping accesses

into a longer critical section. Then we present a schedulability study

to evaluate the algorithms proposed in Sec. 4.

5.1 The Impact of Critical-Section Granularity
on Access Durations

In prior work, we introduced a framework to enable temporal iso-

lation for component-based workloads executing on CPU+GPU

platforms [3]. That work acknowledged that multiple GPU accesses

may be made during a critical section, but neglected to explore the

impact of different access groupings.

When accesses are grouped into a critical section, the durations

of the accesses themselves may decrease, as illustrated in Tbl. 1.

These measurements were taken from a CV application executed

on a CPU+GPU platform equipped with two eight-core 2.10-GHz

Intel Xeon Silver 4110 processors and one NVIDIA Titan V GPU.

Note that in these experiments, both the scheduler and the syn-

chronization protocol differ from the context we consider in this pa-

per (G-EDF within component-based time partitions versus unipro-

cessor fixed priority, and a modified version of the OMLP [9] versus

the PIP). However, the measurements were taken while HOG exe-

cuted non-preemptively while holding the lock, and our focus in

presenting them here is the impact on kernel-execution times given

different groupings of kernels (accesses) into critical sections.

Our CV workload, illustrated in Fig. 5, is called Histogram of

Oriented Gradients (HOG) [8]; a simplified depiction is given in

Fig. 1. For each input image, this application resizes the image

(kernel A) to one of several different resolutions, and then performs

the remaining four computations on each resolution. In total, for 13

image resolutions there are 64 GPU kernels (one resolution doesn’t

require resizing) executed for each input image, along with a single

copy-in of the image and 13 copy-out operations to retrieve results

from the GPU.

We executed two instances of this application for 25000 images

each, measuring the duration of each GPU kernel on the CPU us-

ing clock_gettime(), for two configurations: one in which each

GPU access (78 including both copies and kernels) composed its

Copy in 
image

Copy outB C D E

A B C D E

A B C D E Copy out

Copy out

Figure 5: The GPU-based HOG algorithm comprises five ker-
nels per image resolution (kernel A resizes the image, and is
skipped for the original resolution).

own critical section, and another in which all kernels for a given

resolution were grouped into one critical section and all copy-out

operations were grouped (for a total of 1 + 13 + 1 = 15 critical sec-

tions). The CPU-based 99.9th-percentile measurements of durations

of individual accesses are reported in Tbl. 1.

As noted in Sec. 1, when accesses are grouped into one crit-

ical section, the duration of the first access (kernel A for most

image resolutions, and kernel B for one) is relatively unchanged

and the durations of subsequent accesses are significantly reduced

by almost-identical amounts. Our extended task model allows us

to represent systems with this type of behavior: we model the

reduction in access durations as overhead introduced with each in-

dividual critical section. From the experiment summarized in Tbl. 1,

we model the GPU-access overhead to be approximately 100 𝜇s.

5.2 Trading Off Overhead and Blocking
We now present our experimental evaluation of the algorithms

proposed in Sec. 4. We describe our experimental setup and then

discuss the results.

5.2.1 Experimental Setup. We consider randomly generated task

sets and a uniprocessor platform. We assume deadline monotonic

(DM) scheduling, with task priorities assigned by non-increasing

relative deadline, and that resource access is controlled by the PIP.

Our focus is evaluating the improvement in schedulability gained

from optimally grouping resource accesses into critical sections. As

such, we compare against two other approaches, named based on

their behavior for each task 𝜏𝑖 :

• AlwaysCombine: Assigns all accesses 𝛼𝜈
𝑖
to one critical sec-

tion; minimizes𝐶𝑖 without regard for schedulability impacts.

• NeverCombine: Assigns each access 𝛼𝜈
𝑖
to its own critical

section; minimizes the blocking of higher-priority tasks.

We also compare against NOLOCK, in which resource accesses

are ignored; this does not represent the behavior of the system

(as accesses must be managed), but rather represents a theoreti-

cal upper-bound on possible performance. For example, at higher

system utilizations, some task sets are not schedulable even if the

synchronization-related overhead and blocking are ignored.

We utilized the SchedCAT [1] library to generate task systems

and determine schedulability for each task system under the dif-

ferent access-grouping approaches. As our focus is demonstrating

that the trade-off in critical-section granularity is a worthwhile one

to consider, we present the results of schedulability experiments ex-

ploring a variety of configurations, i.e., selections of the parameters

shown in Tbl. 3. When using a given range, values were selected

uniformly from that range on a per-task basis.
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Table 3: Parameter Selections for Schedulability Study

Parameter Selections

utilization 𝑢𝑖
light (0.001 – 0.1)

medium (0.1 – 0.4)

period𝑇𝑖
short (3 ms – 33 ms)

moderate (10 ms – 100 ms)

deadline 𝐷𝑖 (0.4 · 𝑇𝑖 – 0.6 · 𝑇𝑖 )
overhead O 3 𝜇s, 100 𝜇s

access duration |𝛼𝜈
𝑖
|

short (1 𝜇s – 15 𝜇s)

moderate (15 𝜇s – 100 𝜇s)

gpu (10 𝜇s – 200 𝜇s)

WCET𝐶𝑖 (before adding O) 𝑢𝑖 · 𝑇𝑖
goal number of accesses 4, 10

ratio of durations of access to inter-

leaving non-access segments |𝛼
𝑖
|/|𝛾

𝑖
| 0.2, 1.0, or 2.0

fraction of tasks that require

access to the resource

0.6, 0.8, or 1.0

The chosen values of |𝛼
𝑖
| and the target number of accesses for

a given task 𝜏𝑖 may result in an amount of time spent accessing the

shared resource that exceeds 𝐶𝑖 . Therefore, we capped the number

of accesses for task 𝜏𝑖 such that AlwaysCombine would result in a

single critical section with 𝐿𝑖 < 0.95 ·𝐶𝑖 .
We generated accesses in a cluster centered temporally within

the execution of a task, with the duration |𝛾
𝑖
| of each interleaving

non-access segment determined by the ratio |𝛼
𝑖
|/|𝛾

𝑖
|.

Given our motivation of exploring the impact of critical-section

granularity for shared GPU accesses and the experiments discussed

in Sec. 5.1, we chose O = 100 𝜇s. To provide a point of compar-

ison, we also considered a smaller overhead value of O = 3 𝜇s,

which is nearer to the overhead introduced by a variety of locking

protocols [19].

5.2.2 Experimental Results. For each value of system utilization,

we generated at least 100 task systems, and for each randomly cho-

sen resource-accessing task in a given task system, we generated the

accesses and then separately grouped them using one of the three

grouping policies. Each data point in one of our resulting graphs in-

dicates the fraction of task sets generated for that system utilization

that were deemed schedulable using the execution-requirement

computation from Eq. (3), assuming a specific grouping policy.

Before addressing our focus of GPU-inspired accesses, we first

observe that for some systems, the granularity of critical sections

may have no impact on schedulability.

Obs. 1. For low-overhead configurations, the grouping of accesses
into critical sections has minimal impact on schedulability.

This is demonstrated by Fig. 6, which depicts the results for a

configuration with O = 3 𝜇s. When access-related overhead is sig-

nificantly less than both the access durations and the period, then

the difference in worst-case execution with one versus ten critical

sections is insignificant. This is the case for many of the configura-

tions we explored, including those with 3 𝜇s overhead, non-"gpu"

access durations, and even some with "gpu" access durations.

We now focus on the configurations for which schedulability is

impacted by access groupings. Specifically, we look at the impact

of critical-section granularity for accesses similar to those made to
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Figure 6: Schedulability given different access-grouping poli-
cies, for "short" access durations, "moderate" periods, "light"
task utilizations, 3 𝜇s overhead, with 100% of tasks accessing
the shared resource with a goal of 4 accesses each, and with
a ratio of 0.2 for |𝛼

𝑖
|/|𝛾

𝑖
|.

NOLOCK
PIP+NeverCombine

PIP+Optimal
PIP+AlwaysCombine

Figure 7: Schedulability given different access-grouping poli-
cies, for “gpu” access durations, “short” periods, “medium”
task utilizations, 100 𝜇s overhead, with 80% of tasks accessing
the shared resource with a goal of 10 accesses each, and with
a ratio of 2.0 for |𝛼

𝑖
|/|𝛾

𝑖
|.

a GPU, using O = 100 𝜇s. The results for two such configurations

(differing in per-task utilization) are depicted in Figs. 7 and 8.

Obs. 2. For GPU-inspired configurations, coarse-grained access group-
ings generally result in higher schedulability than fine-grained access
groupings.

This can be seen by comparing the AlwaysCombine and Never-

Combine curves in Fig. 7. For example, with a system utilization of

0.55, NeverCombine was schedulable for only 31.3% of generated

task systems, whereas AlwaysCombine was deemed schedulable

for 60.9% of generated task systems.

The trend in Obs. 2 was generally the case in the medium-task-

utilization GPU-inspired configurations we explored. However, for

systems with smaller per-task utilizations (and thus for which the

generated task systems contain more tasks), we see that this trend

no longer holds.

Obs. 3. For GPU-inspired configurations with small task utilizations,
neither AlwaysCombine nor NeverCombine dominates the other.

This can be seen in comparing the AlwaysCombine and Never-

Combine curves in Fig. 8. For total system utilizations greater than

0.4, the behavior is similar to that of Fig. 7. However, for lower sys-

tem utilizations, NeverCombine resulted in higher schedulability

than AlwaysCombine; for example, at a total system utilization of
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NOLOCK
PIP+NeverCombine
PIP+AlwaysCombine
PIP+Optimal

Figure 8: Schedulability given different access-grouping poli-
cies, for “gpu” access durations, “short” periods, “light” task
utilizations, 100 𝜇s overhead, with 80% of tasks accessing the
shared resource with a goal of 10 accesses each, and with a
ratio of 2.0 for |𝛼

𝑖
|/|𝛾

𝑖
|.

0.35, NeverCombine resulted in 99.0% of systems being schedulable,

whereas AlwaysCombine resulted in only 89.3% being schedulable.

We conclude with a general observation.

Obs. 4. The optimal grouping algorithm performs at least as well as
both AlwaysCombine and NeverCombine.

This can be seen in both Figs. 7 and 8. For example, in Fig. 8 for

system utilization 0.55, our algorithm achieves 96.8% schedulability,

whereas AlwaysCombine and NeverCombine achieve only 67.2%

and 3.0% schedulability, respectively. Our algorithm performed at

least as well the others for every configuration we explored.

6 CONCLUSION
In this paper, we have presented an extended resource model that

considers as top-level entities the individual accessesmade to shared

resources, and demonstrated the trade-off between different choices

of granularity when grouping the accesses into critical sections. To

address this trade-off, we proposed an algorithm to determine the

optimal grouping of accesses into critical sections for task systems

under fixed-priority scheduling. Our algorithm requires only a sin-

gle pass through tasks in decreasing-priority order, determining

critical sections and updating the worst-case execution time of each

task accordingly. We have presented a CV-based GPU experiment

that showed decreased critical-section durations when accesses

were grouped; we categorized this difference as overhead. We per-

formed schedulability experiments to demonstrate the potential

improvements in schedulability due to decreased overhead of one

task at the expense of increased pi-blocking incurred by others.

In the future, we plan to extend our analysis to systems utilizing

multiple shared resources and with accesses arbitrated by different

synchronization protocols. We also plan to extend our work to

multiprocessor platforms and to more accurately account for the

overhead due to the synchronization mechanism or any loss of

affinity with the shared resource. Finally, we will explore real-world

task systems to more accurately model the distribution of accesses

within a task, including the durations of the non-access segments.
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