Definitions

Consider two functions $f(n)$ and $g(n)$.

- $f(n)=O(g(n))$ if there exists constants $c>0, n_{0} \geq 0$ such that $\forall n \geq n_{0}: f(n) \leq c \cdot g(n)$.
- $f(n)=\Omega(g(n))$ if there exists constants $d>0, n_{0} \geq 0$ such that $\forall n \geq n_{0}: d \cdot g(n) \leq f(n)$.
- $f(n)=\Theta(g(n))$ if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Questions

1. Let $f(n)=3 n^{2}+2 n+40$ and let $g(n)=n^{2}$. Prove that $f(n)$ is $O(g(n))$.
2. Let $f(n)=3 n^{2}+2 n+40$ and let $g(n)=n^{2}$. Prove that $f(n)$ is $\Omega(g(n))$.
3. For each of the following, determine if a particular type of function exists. If it does, give an example.
(a) Is there a function $f(n)$ where $f(n)=O\left(n^{2}\right)$ but $f(n) \neq \Omega(n)$?
(b) Is there a function $f(n)$ where $f(n)=\Omega\left(n^{2}\right)$ but $f(n) \neq O(n)$?
(c) Is there a function $f(n)$ where $f(n)=O(n)$ but $f(n) \neq O\left(n^{2}\right)$?
(d) Is there a function $f(n)$ where $f(n) \neq O(n)$ but $f(n) \neq \Omega(n)$?
4. (Kleinberg-Tardos 2.3) Arrange the following list of functions in ascending order of growth rate. That is, if $f(n)$ precedes $g(n)$ in your list, then $f(n)=O(g(n))$. Make sure to identify any ties $f(n)$ and $g(n)$ where $f(n)=\Theta(g(n))$.

$$
\begin{array}{llllll}
n^{2.5} & \sqrt{2 n} & n+10 & 10^{n} & 100^{n} & n^{2} \log n
\end{array}
$$

5. Imagine n students live in a dorm. You want to identify a group of k students who live in the dorm, but have never taken a class together. But, you don't know for sure that such a group exists.
(a) How many different groups of k students are there of the n students living in the dorm?
(b) Let's assume that k is constant (can't change). Make an argument that to loop through all such groups would be $O\left(n^{k}\right)$.
(c) A brute-force algorithm to answer our question is to loop through all groups of k students and for each group, consider all pairs of students to determine if they have taken a class together. Assume that it takes constant time $O(1)$ to determine if any two students have taken a class together. What would the asymptotic runtime of this algorithm be?
