$$
\begin{gathered}
\operatorname{cs} 252 \\
\text { W, } 24 \text { April } 2024
\end{gathered}
$$

Abstract Data Type (ADI)
(1) A description of some data
(2) A list of operations to te performed on it.

String ADT
(1) A sequence of characters
(2) char at index length string comparison concatenation deletechan@index
Instances of Strings: "dog", [contents of $\left.\begin{array}{c}\text { Hamlet }\end{array}\right]$

Priority queue $A D T$
(1) A collection of things, each of which has a "key" from an ordered set
(2) Enqueue - add a (key, thing) to the PQ

Dequeue - remove the (key thing) with the largest (smallest)? Key Size/ length

$$
\begin{aligned}
& \text { Dijkstra's Ah } \\
& \text { needs one of }
\end{aligned}
$$

these
$P Q$, min, using a singly linked list, sorted by key (min at head)

Enqueue:
$(k, y)$$O(N)$
Dequeue min-priority: $O(1)$
$P Q$ w/ a min-heap

Enqueue:
Depends on implementation

- Binary ${ }^{2}$ tree
- Each node's Key is \geqslant its parent's key
- It's "full"
- each level has $\max _{\text {nodes }}$ except
bottom level, filled kfftoright

	1	2	3	4	5	6	
5	11	7	19	12	9	6	

Enqueue:
Dequeue:
Enqueue: 6

(1) Stick 6 at the end
(2) Fix the heap condition by walking the new node up the heap.

Dequeue: - remove root
(2) more bottom right item to the root
(5) fix the heap

Dequene

are at indexes

$$
2 k+1+2 k+2
$$

ist Aenition
Q: $A B C D E F G H I$ I $\quad u=J$

$\operatorname{AsE} E[u]=0$
alt $=0+2$
if att $<\operatorname{dot}[A]$ $\operatorname{dist}[A]=2$

$$
u=I
$$

$$
\begin{aligned}
V & =C \\
\text { alt } & =1+5
\end{aligned}
$$

if att $<$ dist[u] dst[m] $=a 1 t$

