$$
\operatorname{cs} 252
$$

W, 17 Apil 2024
R
counter-example
Why does "smallest first"fail?
re earliest stant

Why dres
"earllest stayl" fail?
earliest finish

Thu. "Earliest finish" greedy alg works - For this problem.

Proof outline
Given $A \lg \rightarrow A=\left\{i_{1}, \ldots, i_{k}\right\}$
$\underset{\substack{\text { Suppose } \theta \\ \text { is optimal }}}{\rightarrow} O=\left\{j_{1}, \ldots, j_{\underline{m}}\right\}$
is optimal
m is as
possible prove $k \geqslant m$

How many possible subsets of R are these?

$$
\begin{gathered}
\text { Valid subsets } \\
\text { (no overlap) } \\
\text { le }
\end{gathered}
$$

$$
\leq 2^{R}
$$

finite set $R=\{a, b, c\}$

$$
2^{3}\left\{\begin{array}{cccc}
0 & 0 & 0 & \phi \\
0 & 0 & 1 & \{c\} \\
1 & \vdots & 0 & \{a, b\} \\
1 & \vdots & & \{a, b, c\} \\
1 & 1 & &
\end{array}\right.
$$

Proof, continued
(1) $f(i)) \leqslant f\left(j_{1}\right) B_{a_{a x}}$

$$
\begin{aligned}
& A=\left\{i_{1}, \ldots, i_{\alpha}\right\} \\
& \theta=\left\{j_{1}, \ldots, j_{n}\right\}
\end{aligned}
$$

$$
f\left(i_{1}\right) \leqslant s\left(i_{2}\right) \leqslant f\left(i_{2}\right) \leqslant s\left(i_{3}\right)
$$

(2) $f\left(i_{x}\right) \leqslant f\left(j_{x}\right)^{I_{n}} x_{x}$
for $x=2 \ldots k$
$f^{(\hat{j})} \leq s\left(j_{2}\right) \leq$.
(3) wrap it up

