
CS 252: Algorithms
Problem Set #3

Layla Oesper, Jeff Ondich
Spring 2024

One question of your choice (either #1 or #2 or #3) is due by 5:00PM Tuesday, April 9 and
will be graded on completion only (1 point). Your full answers to all questions are due by 5:00PM

Friday, April 12. Each solution will be graded for correctness and clarity (4 points per question).
Read the course information page/syllabus for further info about this 4-point scale.

1. You’ve just been elected to the Carleton Student Association (CSA) and are working to put
together small working groups across all class years that will make recommendations for the
initiatives the CSA will pursue in the future. Each small working group will be led by one
CSA representative and will also contain 4 student volunteers - one first-year, one sophomore,
one junior, and one senior. You aren’t sure yet how many student volunteers you will get,
so for now you are planning to have n people from each of these 5 groups (CSA, first year,
sophomore, junior, and senior). In summary, you are working to coordinate 5n total people
into n total small groups.

You want to create groups that are as happy as possible with their group mates. Your plan
is to ask all of the participants to provide their ordered preferences over all the other 5n− 1
people, from which your algorithm will derive the working groups.

You decide to define a group instability as follows: two student volunteers x and y form a
group instability if they are from the same class year and they both prefer each of the members
of the other’s group to the corresponding members of their own.

For example, suppose x ∈ G1 and y ∈ G2 are both juniors. Then x and y form a group
instability if x prefers the first-year in G2 to the first-year in G1 AND y prefers the first-year in
G1 to the first-year in G2, and similarly for the sophomores, seniors, and CSA representatives
in G1 and G2.

Notice, that this definition only allows a group-instability to be formed by two student-
volunteers from the same class year. Also, it’s important to note that under this definition
two CSA representatives can’t form a group-instability.

Your job is to design an efficient algorithm to create a set of groups such that there are no
group instabilities. You will also need to provide a convincing argument that your algorithm
does just that and an analysis of its runtime in terms of n.

Hint: to get started, think about the case where you have only CSA representatives and
seniors and solve this smaller problem first. Now can you find a way to include the juniors?
Then the sophomores? Then the first-years? Also, notice that this definition of stability
is quite different from that in a standard stable matching – among other things, here an
instability is formed by two people of the same year, whereas in the stable-matching setting
an instability is formed by two people of different types.

2. Congratulations, you’ve been hired by the TV network ABC after graduating from Carleton!
You have been put in charge of using the Gale-Shapley algorithm to match up n professional
dancers to n celebrities for the TV show Dancing with the Stars. As you are working on your
implementation you notice that there are some celebrities that are consistently highly ranked
by the professionals. You are starting to wonder how this might impact the matches output
by the algorithm.



CS 252: Algorithms
Problem Set #3

Layla Oesper, Jeff Ondich
Spring 2024

Specifically, you start to consider the following scenario. A subset of k of the n celebrities are
more popular than the other n− k celebrities; they’re so popular that every professional has
these same k celebrities as their top k choices (though they may not agree on the ordering
of the k celebrities). You want to figure out what will happen to these k celebrities if they
do the asking (proposing) for the G-S algorithm. You conjecture that these celebrities will
always end up with one of their top k choices of professionals.

(a) Often, doing small examples before trying to prove something can help convince you that
what you hope to prove is actually true, and can give you additional context for when you
start your proof. With this in mind, create a small example for the scenario described
above where n = 5 and k = 3 and run Gale-Shapley to see if what happens matches your
conjecture. Include your starting preference lists, the sequence of proposals, and the final
matches in your write-up. (You may actually want to try this more times with different
n and k, but I only ask you to include the one specified example in your write-up).

(b) Let c be one of the celebrities who is ranked in the top k choices by all of the profes-
sionals. Prove that if the Gale-Shapley algorithm is run with the celebrities doing the
asking (proposing), then celebrity c will always end up with one of their top k preferred
professionals.

Hint: There are many ways that you might go about proving this. I found proof by
contradiction to be a good technique to use here. If you don’t remember how that
works, and you aren’t sure where to start - I’d suggest reviewing that proof technique.

3. In this exercise, you are going to consider a particular instance of the stable matching problem
where you are matching n piano teachers to n students, and all n piano students have identical
preferences over the piano teachers.

(a) Write out a small example with n = 4 and preference lists that have the properties
described above. Run through the Gale-Shapley algorithm with the students doing the
asking. Include your starting preference lists, the sequence of proposals (so you can
count exactly how many proposals occur), and the final matches in your write-up.

(b) Why might it be useful to know the lower-bound on the number of proposals that happen
during the execution of the Gale-Shapley algorithm? (∼1-2 sentences should suffice.)

(c) Write a convincing argument that the Gale-Shapley algorithm requires Ω(n2) proposals
on any instance with the properties described above.


