
CS 252: Algorithms
Problem Set #2

Layla Oesper, Jeff Ondich
Spring 2024

One question of your choice (either #1 or #2) is due by 5:00PM Tuesday, April 2 and will
be graded on completion only (1 point). Your full answers to all questions are due by 5:00PM

Friday, April 5. Each solution will be graded for correctness and clarity (4 points per question).
Read the course information page for further info about this 4-point scale.

At the top of your write-up for each problem, please estimate the amount of time you spent on
the problem, list your collaborators, and briefly describe the nature of your collaboration. Also,
provide a list of other sources you used, including links for online resources. Thanks!

1. Guess what? You have been hired at the US Internal Revenue Service (IRS) as a data
analyst. You have a dataset consisting of a single column of numbers, unsorted. This column
of numbers is the gross adjusted income, rounded to the nearest 1000 dollars, from every US
individual tax return filed for the 2023 tax year. So for example, there might be a 42 in the
column representing an entry-level marketing associate who made $41,850 last year, a 5450
representing the $5.45 million made by Minnesota Twins pitcher Pablo López, and a 63100
for Apple’s CEO Tim Cook.

Your bosses want you to do a bunch of modeling experiments to imagine the impact of
various proposed tax policies. Based on the many, many feature requests handed to you from
up above, you have decided that there’s one computational operation you need to make really
fast: given a salary range (e.g., 50-75, representing $50,000 - $75,000), how many people (or,
more accurately, how many tax returns) are there in that range? We’re going to call this
count the range-count for the specified range.

Of course, the brute force approach to this problem is to scan through the entire column of
numbers and count how many of them are in the specified range. The problem is that there
are about 260 million tax returns, and you need to perform this operation a lot, with a ton
of different randomized salary ranges, to complete your project. So an O(n) algorithm just
won’t cut it.

More technically, here’s the situation. You have a list L containing n integer incomes in the
range [0,m]. (Here, income means the gross adjusted income from one of the tax returns, ex-

pressed as an integer number of thousands of US dollars.) Your goal is to devise an algorithm
to compute the range-count for any income range in O(1) time.

You may preprocess L as long as you can do it in O(n +m) time. Preprocessing is a one-
time action done before you run your range-count algorithm. You will then run range-count
a zillion times (where zillion is a technical term whose definition is I dunno for sure, but a

lot).

Here’s the range-count problem:

Input: two integers x ∈ [0,m] and y ∈ [0,m] where x ≤ y.
Output: the number of incomes in the range [x, y].

For example, suppose L = 〈30, 25, 90, 80, 23, 35, 75, 70〉. Given x = 25 and y = 75, range-count
would be 5.

In your solution, make sure you clearly describe both your pre-processing step and how you
determine the number of incomes in the specified range. You must also provide a proof (i.e.,
a well-reasoned and clearly articulated argument) that your approach is correct and meets all
the specifications.

CS 252: Algorithms
Problem Set #2

Layla Oesper, Jeff Ondich
Spring 2024

2. Back in the day, the Meanderer 2 spacecraft was launched, fully equipped with the best
computer hardware you could buy in 1977. The Meanderer has three still-working cameras:
Cameras B, C, and D.

It has always been true that the Meanderer’s cameras are capable of capturing a lot more
image data than the available network bandwidth can transmit. The cameras have dutifully
dumped their images into Meanderer’s RAM for 47 years, but the transmitter has time to
send only a tiny number of those images back to the Earth-bound scientists before the image
memory fills up and the cameras go back to the beginning and start overwriting their old
images.

Recently the Meanderer’s team (now including some grandchildren of the original team) had a
bright idea. What if we upload some modern image processing algorithms to help Meanderer
make better choices about which images to transmit? We might get more useful data that
way.

A long technical story involving 70s-era caches, I/O buses, and operating systems leads us
here: we need the image pointers stored in our array A to be arranged so that all the Camera
B images come first, then all the Camera C images, and finally all the Camera D images. We
don’t care about the order within each single-camera block. But the algorithm that rearranges
the randomly distributed B’s, C’s, and D’s has to be very fast.

The Meanderer team has formalized this problem like so. You are given an array of n image
pointers A[1...n]. Each image pointer A[k] has a type t(A[k]) ∈ {B, C, D}. You are asked to
rearrange the array A so that all of the B’s come first, then all the C’s, and then all the D’s.
In your solution, you are only allowed two very specific operations on the array:

(i) for a particular j, query t(A[j]); and

(ii) for two particular indices j and k, swap A[j] and A[k].

For example, you cannot copy elements from the array to an auxiliary array or even create
another array (there’s just not enough RAM out there in the Oort Cloud). If you wish, you
may use a small number of integer variables to store indices into the array.

Give an algorithm that runs in time O(n) to perform your assigned task. As always, you
must also provide a proof that your approach is correct and obtains the specified runtime.

Submission Logistics

Write up your solutions to each question in this problem set using LATEX. Convert the LATEXinto a
PDF file and upload the PDF to Moodle.

Please use the class LATEX template as the basis for your write-up. See the class LATEX resources
page for more LATEX help.

Have fun!

