This document is intended as a sample illustrating some techniques you might use in your CS252 problem set write-ups. But go ahead and read the content of this document, too.

1 Definitions

Definition 1.1 Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say that $\mathbf{f}=\mathbf{O}(\mathbf{g})$ if $\exists c>0, n_{0}>0$ such that $n \geq n_{0} \Longrightarrow f(n) \leq c g(n)$.

Definition 1.2 Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say that $\mathbf{f}=\boldsymbol{\Omega}(\mathbf{g})$ if $\exists c>0, n_{0}>0$ such that $n \geq n_{0} \Longrightarrow f(n) \geq c g(n)$.

Definition 1.3 Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say that $\mathbf{f}=\boldsymbol{\Theta}(\mathbf{g})$ if $\exists c_{1}>0, c_{2}>$ $0, n_{0}>0$ such that $n \geq n_{0} \Longrightarrow c_{1} g(n) \leq f(n) \leq c_{2} g(n)$.

2 A few notes about O, Ω, and Θ

- $O(f)$ is commonly pronounced "big oh of f ", "oh of f ", or "order f ".
- There are several commonly-used variants of these notations. For example, a big-oh relationship can be denoted in any of these ways:

$$
\begin{aligned}
& -f=O(g) \\
& -f(n)=O(g(n)) \\
& -f \text { is } O(g) \\
& -f(n) \text { is } O(g(n)) \\
& -f \in O(g) \\
& -f(n) \in O(g(n))
\end{aligned}
$$

- Following the textbook's lead, we will use the $=$ notation, either $f=O(g)$ or $f(n)=$ $O(g(n))$ depending on context and personal preference.

3 Jeff's personal preference, and why we're ignoring it

I personally prefer the \in style of notation, because it best fits the way I think about O and its friends. In my preferred notational approach, we think of $O(g)$ as a set of functions with a particular relationship to g, like so:

Alternative definition: Given a function $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, define $\mathbf{O}(\mathbf{g})$ to be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$for which $\exists c>0, n_{0}>0$ such that $n \geq n_{0} \Longrightarrow f(n) \leq c g(n)$.

This is the style of definition used by a very famous Algorithms book.
The reason I like this set-based way of thinking about O, Ω, and Θ is that it makes many important assertions simpler (at least they seem simpler to me). For example, if I say $O\left(n^{2}\right)=O\left(n^{2}+n\right)$, I'm saying that two sets are equal, and that's all.
If you don't think about $O(g)$ as being a set, however, then the statement $O\left(n^{2}\right)=O\left(n^{2}+n\right)$ is a bit more cumbersome. It's either something intuitively correct but imprecise like " n^{2} and $n^{2}+n$ grow at the same rate", or something more precise but harder to say, like "for any function $f, f=O\left(n^{2}\right) \Longleftrightarrow f=O\left(n^{2}+n\right)$ ".

OK, so that's why I like the set-based \in-notation way of thinking about O, Ω, and Θ. But our textbook most commonly uses $f(n)=O(g(n))$, so we'll do that, too. I'll live.

