This document is intended as a sample illustrating some techniques you might use in your CS252 problem set write-ups. But go ahead and read the content of this document, too.

1 Definitions

Definition 1.1 Given two functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say that $\mathbf{f} = \mathbf{O}(\mathbf{g})$ if $\exists c > 0, n_0 > 0$ such that $n \ge n_0 \implies f(n) \le cg(n)$.

Definition 1.2 Given two functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say that $\mathbf{f} = \mathbf{\Omega}(\mathbf{g})$ if $\exists c > 0, n_0 > 0$ such that $n \ge n_0 \implies f(n) \ge cg(n)$.

Definition 1.3 Given two functions $f, g : \mathbb{N} \to \mathbb{R}^+$, we say that $\mathbf{f} = \Theta(\mathbf{g})$ if $\exists c_1 > 0, c_2 > 0, n_0 > 0$ such that $n \ge n_0 \implies c_1g(n) \le f(n) \le c_2g(n)$.

2 A few notes about O, Ω , and Θ

- O(f) is commonly pronounced "big oh of f", "oh of f", or "order f".
- There are several commonly-used variants of these notations. For example, a big-oh relationship can be denoted in any of these ways:

$$- f = O(g)$$

$$- f(n) = O(g(n))$$

$$- f \text{ is } O(g)$$

$$- f(n) \text{ is } O(g(n))$$

- $-f \in O(g)$
- $-f(n) \in O(g(n))$
- Following the textbook's lead, we will use the = notation, either f = O(g) or f(n) = O(g(n)) depending on context and personal preference.

3 Jeff's personal preference, and why we're ignoring it

I personally prefer the \in style of notation, because it best fits the way I think about O and its friends. In my preferred notational approach, we think of O(g) as a set of functions with a particular relationship to g, like so:

Alternative definition: Given a function $g : \mathbb{N} \to \mathbb{R}^+$, define $\mathbf{O}(\mathbf{g})$ to be the set of all functions $f : \mathbb{N} \to \mathbb{R}^+$ for which $\exists c > 0, n_0 > 0$ such that $n \ge n_0 \implies f(n) \le cg(n)$.

This is the style of definition used by a very famous Algorithms book.

The reason I like this set-based way of thinking about O, Ω , and Θ is that it makes many important assertions simpler (at least they seem simpler to me). For example, if I say $O(n^2) = O(n^2 + n)$, I'm saying that two sets are equal, and that's all.

If you don't think about O(g) as being a set, however, then the statement $O(n^2) = O(n^2 + n)$ is a bit more cumbersome. It's either something intuitively correct but imprecise like " n^2 and $n^2 + n$ grow at the same rate", or something more precise but harder to say, like "for any function $f, f = O(n^2) \iff f = O(n^2 + n)$ ".

OK, so that's why I like the set-based \in -notation way of thinking about O, Ω , and Θ . But our textbook most commonly uses f(n) = O(g(n)), so we'll do that, too. I'll live.