
CS252 - LATEX Sample via Musings on Big-Oh 1

This document is intended as a sample illustrating some techniques you might use in your
CS252 problem set write-ups. But go ahead and read the content of this document, too.

1 Definitions

Definition 1.1 Given two functions f, g : N → R
+, we say that f = O(g) if ∃c > 0, n0 > 0

such that n ≥ n0 =⇒ f(n) ≤ cg(n).

Definition 1.2 Given two functions f, g : N → R
+, we say that f = Ω(g) if ∃ c > 0, n0 > 0

such that n ≥ n0 =⇒ f(n) ≥ cg(n).

Definition 1.3 Given two functions f, g : N → R
+, we say that f = Θ(g) if ∃ c1 > 0, c2 >

0, n0 > 0 such that n ≥ n0 =⇒ c1g(n) ≤ f(n) ≤ c2g(n).

2 A few notes about O, Ω, and Θ

• O(f) is commonly pronounced “big oh of f”, “oh of f”, or “order f”.

• There are several commonly-used variants of these notations. For example, a big-oh
relationship can be denoted in any of these ways:

– f = O(g)

– f(n) = O(g(n))

– f is O(g)

– f(n) is O(g(n))

– f ∈ O(g)

– f(n) ∈ O(g(n))

• Following the textbook’s lead, we will use the = notation, either f = O(g) or f(n) =
O(g(n)) depending on context and personal preference.

3 Jeff’s personal preference, and why we’re ignoring it

I personally prefer the ∈ style of notation, because it best fits the way I think about O and
its friends. In my preferred notational approach, we think of O(g) as a set of functions with
a particular relationship to g, like so:



CS252 - LATEX Sample via Musings on Big-Oh 2

Alternative definition: Given a function g : N → R
+, define O(g) to be the set of all

functions f : N → R
+ for which ∃c > 0, n0 > 0 such that n ≥ n0 =⇒ f(n) ≤ cg(n).

This is the style of definition used by a very famous Algorithms book.

The reason I like this set-based way of thinking about O, Ω, and Θ is that it makes many
important assertions simpler (at least they seem simpler to me). For example, if I say
O(n2) = O(n2 + n), I’m saying that two sets are equal, and that’s all.

If you don’t think about O(g) as being a set, however, then the statement O(n2) = O(n2+n)
is a bit more cumbersome. It’s either something intuitively correct but imprecise like “n2

and n2 + n grow at the same rate”, or something more precise but harder to say, like “for
any function f , f = O(n2) ⇐⇒ f = O(n2 + n)”.

OK, so that’s why I like the set-based ∈-notation way of thinking about O, Ω, and Θ. But
our textbook most commonly uses f(n) = O(g(n)), so we’ll do that, too. I’ll live.

https://en.wikipedia.org/wiki/Introduction_to_Algorithms

