
Informed Search Methods
 How can we improve searching strategy 

by using intelligence?
 Map example:

 Heuristic: Expand those nodes closest in 
“as the crow flies” distance to goal

 8-puzzle:
 Heuristic: Expand those nodes with the 

most tiles in place
 Intelligence lies in choice of heuristic



Best-First Search
 Create evaluation function f(n) which 

returns estimated “value” of expanding 
node

 Example: Greedy best-first search
 “Greedy”: estimate cost of cheapest path 

from node n to goal
 h(n) = “as the crow flies distance”
 f(n) = h(n)





A h(n)=366

TSZ

h(n)=374 h(n)=253 h(n)=329

A O F R

h(n)=366 h(n)=380 h(n)=178 h(n)=193

S B

h(n)=253 h(n)=0

Greedy
Best-First Search



Greedy Best-First Search
 Expand the node with smallest h
 Why is it called greedy?

 Expands node that appears closest to goal
 Similar to depth-first search

 Follows single path all the way to goal, backs up 
when dead end

 Worst case time:
 O(bm), m = depth of search space

 Worst case memory:
 O(bm), needs to store all nodes in memory to see 

which one to expand next



Greedy Best-First Search
 Complete and/or optimal?

 No – same problems as depth first search
 Can get lost down an incorrect path

 How can you (help) to prevent it from 
getting lost?
 Look at shortest total path, not just path to 

goal



A* search (another Best-First 
Search)

 Greedy best-first search minimizes
 h(n) = estimated cost to goal

 Uniform cost search minimizes
 g(n) = cost to node n
 Example of each on map

 A* search minimizes
 f(n) = g(n) + h(n)
 f(n) = best estimate of cost for complete 

solution through n



A* search
 Under certain conditions:

 Complete
 Terminates to produce best solution

 Conditions
 (assuming we don’t throw away duplicates)
 h(n) must never overestimate cost to goal

 admissible heuristic
 “optimistic”
 “Crow flies” heuristic is admissible



A f(n) = 366

TSZ

f(n) = 449 f(n) = 393 f(n) = 447

A O F R

f(n) = 646 f(n) = 526 f(n) = 417 f(n) = 413

A*
Search

P S

f(n) = 415 f(n) = 553

C

f(n) = 526



A O F R

f(n) = 646 f(n) = 526 f(n) = 417 f(n) = 413

A*
Search

P S

f(n) = 415 f(n) = 553

C

f(n) = 526

C B

f(n) = 615 f(n) = 418

R

f(n) = 607



A f(n) = 366

TSZ

f(n) = 449 f(n) = 393 f(n) = 447

A O F R

f(n) = 646 f(n) = 526 f(n) = 417 f(n) = 413

S B

f(n) = 591 f(n) = 450

A*
Search



A* terminates with optimal 
solution

 Stop A* when you try to expand a goal state.
 This the best solution you can find.

 How do we know that we’re done when the 
next state to expand is a goal?
 A* always expands node with smallest f
 At a goal state, f is exact.
 Since heuristic is admissible, f is an underestimate 

at any non-goal state.
 If there is a better goal state available, with a 

smaller f, there must be a node on graph with 
smaller f than that – so you would be expanding 
that instead!



More about A*
 Completeness

 A* expands nodes in order of increasing f
 Must find goal state unless

 infinitely many nodes with f(n) < f* 
 infinite branching factor OR
 finite path cost with infinite nodes on it

 Complexity
 Time: Depends on h, can be exponential
 Memory: O(bm), stores all nodes



Valuing heuristics
 Example: 8-puzzle

 h1 = # of tiles in wrong position
 h2 = sum of distances of tiles from goal 

position (1-norm, also known as Manhattan 
distance)

 Which heuristic is better for A*?



Which heuristic is better?
 h2(n) >= h1(n) for any n

 h2 dominates h1
 A* will generally expand fewer nodes with h2 than 

with h1
 All nodes with f(n) < C* (cost to best solution) are 

expanded. 
 Since h2 >= h1, any node that A* expands with h2 

would also be expanded with h1
 But A* may be able to avoid expanding some nodes with 

h2 (larger than C*)
 (Exception where you might expand a state with h2 but 

not with h1: if f(n) = C*).
 Better to use larger heuristic (if not overestimate)



Inventing heuristics
 h1 and h2 are exact path lengths for simpler 

problems
 h1 = path length if you could transport each tile 

to right position
 h2 = path length if you could just move each tile 

to right position, irrelevant of blank space
 Relaxed problem: less restrictive problem 

than original
 Can generate heuristics as exact cost 

estimates to relaxed problems



Memory Bounded Search
 Can A* be improved to use less 

memory?
 Iterative deepening A* search (IDA*)

 Each iteration is a depth-first search, just 
like regular iterative deepening

 Each iteration is not an A* iteration: 
otherwise, still O(bm) memory

 Use limit on cost (f), instead of depth limit 
as in regular iterative deepening



A f(n) = 366IDA*
Search

f-Cost limit = 366

TSZ

f(n) = 449 f(n) = 393 f(n) = 447



A f(n) = 366IDA*
Search

f-Cost limit = 393

TSZ

f(n) = 449 f(n) = 393 f(n) = 447

A O F R

f(n) = 646 f(n) = 526 f(n) = 417 f(n) = 415



IDA* Analysis
 Time complexity

 If cost value for each node is distinct, only adds 
one state per iteration

 BAD! 
 Can improve by increasing cost limit by a fixed amount 

each time
 If only a few choices (like 8-puzzle) for cost, 

works really well
 Memory complexity

 Approximately O(bd) (like depth-first)
 Completeness and optimality same as A*



Simplified Memory-Bounded 
A* (SMA*)

 Uses all available memory
 Basic idea:

 Do A* until you run out of memory
 Throw away node with highest f cost

 Store f-cost in ancestor node
 Expand node again if all other nodes in 

memory are worse



SMA* Example: Memory of size 3
A f = 12



SMA* Example: Memory of size 3
A f = 12

B f = 15

Expand to the left



SMA* Example: Memory of size 3
A f = 12

B f = 15

Expand node A, since f smaller

C f = 13



SMA* Example: Memory of size 3
A f = 12

forgotten f = 15

Expand node C, since f smaller

C f = 13

D f = 18



SMA* Example: Memory of size 3
A f = 12

forgotten f = 15

Node D not a solution, no more memory: so expand C again

C f = 13
forgotten f = infinity

E f = 24



SMA* Example: Memory of size 3
A f = 12

Re-expand A; record new f for C

C f = 13B f = 15

Forgotten
f = 24 (right)



SMA* Example: Memory of size 3
A f = 12

Expand left B: not a solution, so useless

B f = 15

F f = 25

forgotten = 24



SMA* Example: Memory of size 3
A f = 12

Expand right B: find solution

B f = 15
forgotten f = inf

G f = 20

Forgotten f = 24



SMA* Properties
 Complete if can store at least one 

solution path in memory
 Finds best solution (and recognizes it) if 

path can be stored in memory
 Otherwise, finds best that can fit in 

memory


