
Informed Search Methods
 How can we improve searching strategy 

by using intelligence?
 Map example:

 Heuristic: Expand those nodes closest in 
“as the crow flies” distance to goal

 8-puzzle:
 Heuristic: Expand those nodes with the 

most tiles in place
 Intelligence lies in choice of heuristic



Best-First Search
 Create evaluation function f(n) which 

returns estimated “value” of expanding 
node

 Example: Greedy best-first search
 “Greedy”: estimate cost of cheapest path 

from node n to goal
 h(n) = “as the crow flies distance”
 f(n) = h(n)
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Greedy
Best-First Search



Greedy Best-First Search
 Expand the node with smallest h
 Why is it called greedy?

 Expands node that appears closest to goal
 Similar to depth-first search

 Follows single path all the way to goal, backs up 
when dead end

 Worst case time:
 O(bm), m = depth of search space

 Worst case memory:
 O(bm), needs to store all nodes in memory to see 

which one to expand next



Greedy Best-First Search
 Complete and/or optimal?

 No – same problems as depth first search
 Can get lost down an incorrect path

 How can you (help) to prevent it from 
getting lost?
 Look at shortest total path, not just path to 

goal



A* search (another Best-First 
Search)

 Greedy best-first search minimizes
 h(n) = estimated cost to goal

 Uniform cost search minimizes
 g(n) = cost to node n
 Example of each on map

 A* search minimizes
 f(n) = g(n) + h(n)
 f(n) = best estimate of cost for complete 

solution through n



A* search
 Under certain conditions:

 Complete
 Terminates to produce best solution

 Conditions
 (assuming we don’t throw away duplicates)
 h(n) must never overestimate cost to goal

 admissible heuristic
 “optimistic”
 “Crow flies” heuristic is admissible
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A*
Search



A* terminates with optimal 
solution

 Stop A* when you try to expand a goal state.
 This the best solution you can find.

 How do we know that we’re done when the 
next state to expand is a goal?
 A* always expands node with smallest f
 At a goal state, f is exact.
 Since heuristic is admissible, f is an underestimate 

at any non-goal state.
 If there is a better goal state available, with a 

smaller f, there must be a node on graph with 
smaller f than that – so you would be expanding 
that instead!



More about A*
 Completeness

 A* expands nodes in order of increasing f
 Must find goal state unless

 infinitely many nodes with f(n) < f* 
 infinite branching factor OR
 finite path cost with infinite nodes on it

 Complexity
 Time: Depends on h, can be exponential
 Memory: O(bm), stores all nodes



Valuing heuristics
 Example: 8-puzzle

 h1 = # of tiles in wrong position
 h2 = sum of distances of tiles from goal 

position (1-norm, also known as Manhattan 
distance)

 Which heuristic is better for A*?



Which heuristic is better?
 h2(n) >= h1(n) for any n

 h2 dominates h1
 A* will generally expand fewer nodes with h2 than 

with h1
 All nodes with f(n) < C* (cost to best solution) are 

expanded. 
 Since h2 >= h1, any node that A* expands with h2 

would also be expanded with h1
 But A* may be able to avoid expanding some nodes with 

h2 (larger than C*)
 (Exception where you might expand a state with h2 but 

not with h1: if f(n) = C*).
 Better to use larger heuristic (if not overestimate)



Inventing heuristics
 h1 and h2 are exact path lengths for simpler 

problems
 h1 = path length if you could transport each tile 

to right position
 h2 = path length if you could just move each tile 

to right position, irrelevant of blank space
 Relaxed problem: less restrictive problem 

than original
 Can generate heuristics as exact cost 

estimates to relaxed problems



Memory Bounded Search
 Can A* be improved to use less 

memory?
 Iterative deepening A* search (IDA*)

 Each iteration is a depth-first search, just 
like regular iterative deepening

 Each iteration is not an A* iteration: 
otherwise, still O(bm) memory

 Use limit on cost (f), instead of depth limit 
as in regular iterative deepening



A f(n) = 366IDA*
Search

f-Cost limit = 366

TSZ

f(n) = 449 f(n) = 393 f(n) = 447



A f(n) = 366IDA*
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IDA* Analysis
 Time complexity

 If cost value for each node is distinct, only adds 
one state per iteration

 BAD! 
 Can improve by increasing cost limit by a fixed amount 

each time
 If only a few choices (like 8-puzzle) for cost, 

works really well
 Memory complexity

 Approximately O(bd) (like depth-first)
 Completeness and optimality same as A*



Simplified Memory-Bounded 
A* (SMA*)

 Uses all available memory
 Basic idea:

 Do A* until you run out of memory
 Throw away node with highest f cost

 Store f-cost in ancestor node
 Expand node again if all other nodes in 

memory are worse



SMA* Example: Memory of size 3
A f = 12



SMA* Example: Memory of size 3
A f = 12

B f = 15

Expand to the left



SMA* Example: Memory of size 3
A f = 12

B f = 15

Expand node A, since f smaller

C f = 13



SMA* Example: Memory of size 3
A f = 12

forgotten f = 15

Expand node C, since f smaller

C f = 13

D f = 18



SMA* Example: Memory of size 3
A f = 12

forgotten f = 15

Node D not a solution, no more memory: so expand C again

C f = 13
forgotten f = infinity

E f = 24



SMA* Example: Memory of size 3
A f = 12

Re-expand A; record new f for C

C f = 13B f = 15

Forgotten
f = 24 (right)



SMA* Example: Memory of size 3
A f = 12

Expand left B: not a solution, so useless

B f = 15

F f = 25

forgotten = 24



SMA* Example: Memory of size 3
A f = 12

Expand right B: find solution

B f = 15
forgotten f = inf

G f = 20

Forgotten f = 24



SMA* Properties
 Complete if can store at least one 

solution path in memory
 Finds best solution (and recognizes it) if 

path can be stored in memory
 Otherwise, finds best that can fit in 

memory


