&W Informed Search Methods

= How can we improve searching strategy
by using intelligence?
= Map example:

" Heuristic: Expand those nodes closest in
“as the crow flies” distance to goal

= 8-puzzle:

= Heuristic: Expand those nodes with the
most tiles in place

= Intelligence lies in choice of heuristic

&W Best-First Search

= Create evaluation function f(n) which
returns estimated “value” of expanding
node

= Example: Greedy best-first search

= “"Greedy”: estimate cost of cheapest path
from node n to goal

= h(n) = “as the crow flies distance”
= f(n) = h(n)

Romania with step costs in km

Straight—line distance

to Bocharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Faparas
GGinrgin
Hirzova
Insi

Lupaj
Mehadia
MNeamt
Oradea
Pitesti
Rimmnicn Vilcea
=ibin
Timisoara
Urziceni
Vaslni
Zerind

366
0
160
242
161
1748
7
151
226
244
241
234
350
L
193
253
329
A0
19%
¥4

@ h(n)=366
h(n)=374 / lh(n)=253 h(n)=329

P S

A o (e Can
h(n)=366 h(n)=380 hfn/)élﬂ\ h(n)=193
Greedy s)

Best-First Search h(m=253 h(n)=0

W Greedy Best-First Search

= Expand the node with smallest h

= Why is it called greedy?
= Expands node that appears closest to goal

= Similar to depth-first search

= Follows single path all the way to goal, backs up
when dead end

= Worst case time:
= O(b™), m = depth of search space

= Worst case memory:

= O(b™), needs to store all nodes in memory to see
which one to expand next

w Greedy Best-First Search

= Complete and/or optimal?
= No — same problems as depth first search
= Can get lost down an incorrect path

= How can you (help) to prevent it from
getting lost?

= Look at shortest total path, not just path to
goal

A* search (another Best-First

w Search)

" Greedy best-first search minimizes
= h(n) = estimated cost to goal

= Uniform cost search minimizes
= g(n) = cost to node n
= Example of each on map

= A*¥ search minimizes

" 1(n) = g(n) + h(n)
= f(n) = best estimate of cost for complete
solution through n

&W A* search

= Under certain conditions:
= Complete
= Terminates to produce best solution

= Conditions
= (assuming we don't throw away duplicates)

= h(n) must never overestimate cost to goal
= admissible heuristic
= “optimistic”
= “Crow flies” heuristic is admissible

8
-
-

f(n) = 526 f(n) = 415 f(n) = 553

A>I<
SW \\
(n) = (n) = / /ﬁ *\

f(n) = 607 f(n) =615 f(n) = 418

A* @f(n) = 366
Sea rAch/
f(n) = 449 lf(n)% f(n) = 447

P S

(2D Co) Cr) (Cro

f(n)=646 f(n) =526 f(n =><1<< f(n) = 413

(s Ceo

f(n) =591 f(n) = 450

A* terminates with optimal

&W solution

= Stop A* when you try to expand a goal state.
= This the best solution you can find.

= How do we know that we're done when the
next state to expand is a goal?
= A* always expands node with smallest f
= At a goal state, f is exact.

= Since heuristic is admissible, f is an underestimate
at any non-goal state.

= If there is a better goal state available, with a
smaller f, there must be a node on graph with
smaller f than that — so you would be expanding
that instead!

&W More about A*

= Completeness
= A* expands nodes in order of increasing f

= Must find goal state unless
= infinitely many nodes with f(n) < f*
infinite branching factor OR
finite path cost with infinite nodes on it

= Complexity
= Time: Depends on h, can be exponential
= Memory: O(b™), stores all nodes

w Valuing heuristics

= Example: 8-puzzle
" h1 = # of tiles in wrong position

= h2 = sum of distances of tiles from goal
position (1-norm, also known as Manhattan
distance)

= \Which heuristic is better for A*?

w Which heuristic is better?

= h2(n) >= h1(n) for any n
= h2 dominates hl

= A* will generally expand fewer nodes with h2 than
with hl

= All nodes with f(n) < C* (cost to best solution) are
expanded.

= Since h2 >= h1, any node that A* expands with h2
would also be expanded with hl

= But A* may be able to avoid expanding some nodes with
h2 (larger than C*)

= (Exception where you might expand a state with h2 but
not with hl: if f(n) = C*).

= Better to use larger heuristic (if not overestimate)

w Inventing heuristics

= h1 and h2 are exact path lengths for simpler

problems
= h1 = path length if you could transport each tile
to right position
= h2 = path length if you could just move each tile
to right position, irrelevant of blank space
= Relaxed problem: less restrictive problem

than original

= Can generate heuristics as exact cost
estimates to relaxed problems

W Memory Bounded Search

= Can A* be improved to use less
memory?

= Jterative deepening A* search (IDA*)

= Each iteration is a depth-first search, just
like regular iterative deepening

= Each iteration is not an A* iteration:
otherwise, still O(b™) memory

= Use limit on cost (f), instead of depth limit
as in regular iterative deepening

TDA* f-Cost limit = 366

f(n) = 449 lf(n)%‘ f(n) = 447

DA* s
Search
f(n) = %C/ lf(n) = 393 f(n) = 447

Sl Rastas

f(n) =646 f(n) = 526 f(n) =417 f(n) = 415

W IDA* Analysis

= Time complexity

= If cost value for each node is distinct, only adds
one state per iteration
= BAD!
= Can improve by increasing cost limit by a fixed amount
each time

= Jf only a few choices (like 8-puzzle) for cost,
works really well

= Memory complexity
= Approximately O(bd) (like depth-first)
= Completeness and optimality same as A*

Simplified Memory-Bounded
W A* (SMA*)
= Uses all available memory

= Basic idea:
= Do A* until you run out of memory

= Throw away node with highest f cost
= Store f-cost in ancestor node

= Expand node again if all other nodes in
memory are worse

SMA* Example: Memory of size 3
A@ f=12

SMA* Example: Memory of size 3

Expand to the left

SMA* Example: Memory of size 3
A f=12

Expand node A, since f smaller

SMA* Example: Memory of size 3

A@ f=12
forgotten f = 15

cC@ f=13

D@ f=18

Expand node C, since f smaller

SMA* Example: Memory of size 3

A@ f=12
forgotten f = 15

cC@ f=13

forgotten f = infinity

E@ f= 24
Node D not a solution, no more memory: so expand C again

SMA* Example: Memory of size 3
A f=12

Forgotten
f = 24 (right)

Re-expand A; record new f for C

SMA* Example: Memory of size 3
A f=12
forgotten = 24

F@ f=25

Expand left B: not a solution, so useless

SMA* Example: Memory of size 3

A f=12
Forgotten f = 24

f=15
forgotten f = inf

Expand right B: find solution

W SMA* Properties

= Complete if can store at least one
solution path in memory

= Finds best solution (and recognizes it) if
path can be stored in memory

= Otherwise, finds best that can fit in
memory

