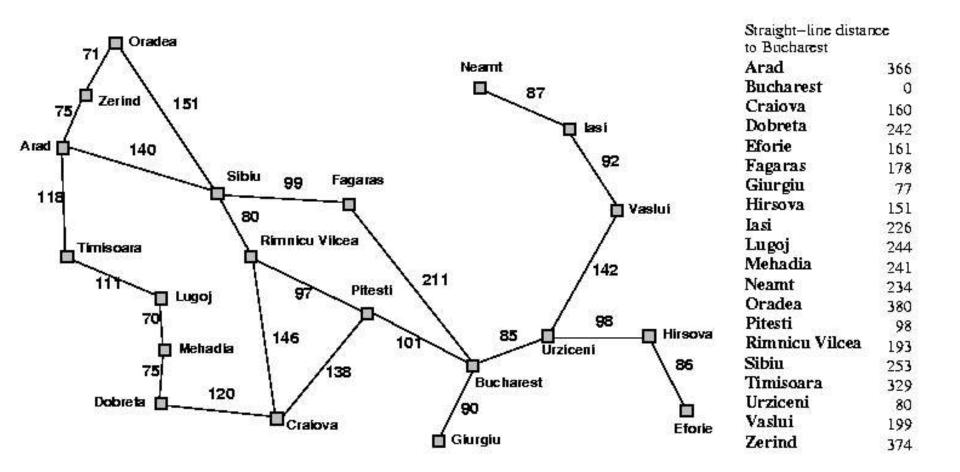
Informed Search Methods

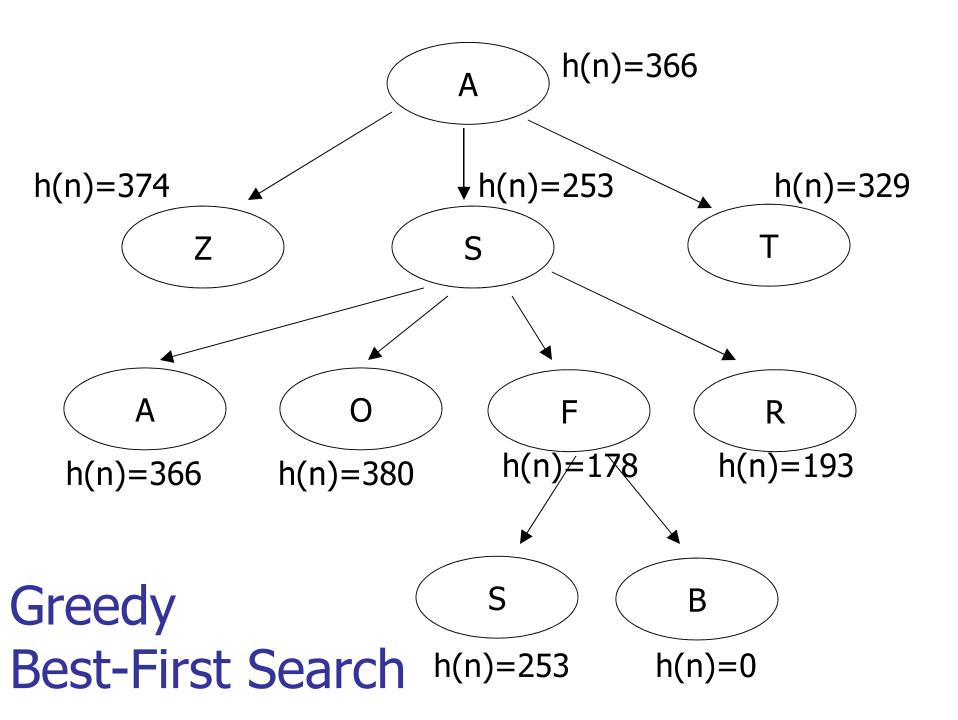
- How can we improve searching strategy by using intelligence?
- Map example:
 - Heuristic: Expand those nodes closest in "as the crow flies" distance to goal
- 8-puzzle:
 - Heuristic: Expand those nodes with the most tiles in place
- Intelligence lies in choice of heuristic

Best-First Search

- Create evaluation function f(n) which returns estimated "value" of expanding node
- Example: Greedy best-first search
 - "Greedy": estimate cost of cheapest path from node n to goal
 - h(n) = "as the crow flies distance"
 - f(n) = h(n)

Romania with step costs in km





Greedy Best-First Search

- Expand the node with smallest h
- Why is it called greedy?
 - Expands node that appears closest to goal
- Similar to depth-first search
 - Follows single path all the way to goal, backs up when dead end
- Worst case time:
 - O(b^m), m = depth of search space
- Worst case memory:
 - O(b^m), needs to store all nodes in memory to see which one to expand next

Greedy Best-First Search

Complete and/or optimal?

- No same problems as depth first search
- Can get lost down an incorrect path
- How can you (help) to prevent it from getting lost?
 - Look at shortest total path, not just path to goal

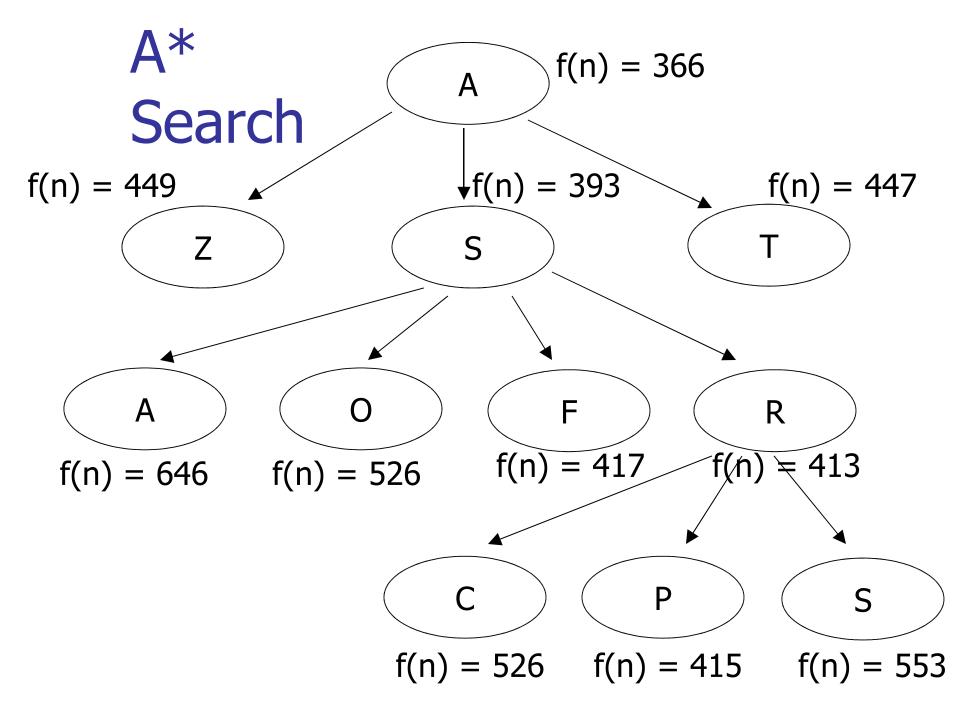
A* search (another Best-First Search)

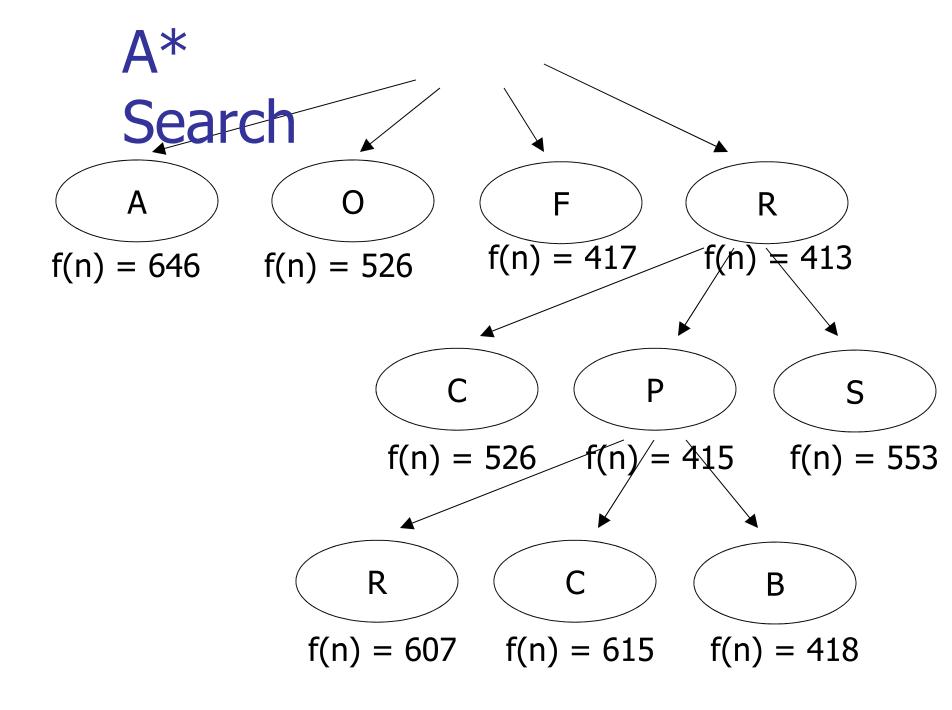
- Greedy best-first search minimizes
 h(n) = estimated cost to goal
- Uniform cost search minimizes
 - g(n) = cost to node n
 - Example of each on map
- A* search minimizes
 - f(n) = g(n) + h(n)
 - f(n) = best estimate of cost for complete solution through n

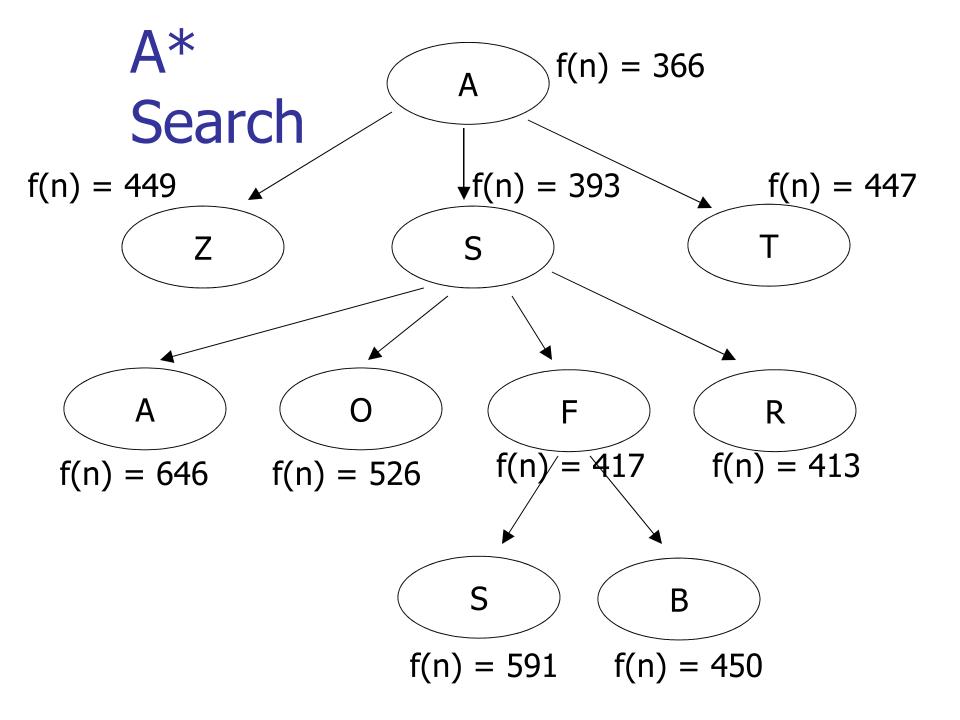
A* search

Under certain conditions:

- Complete
- Terminates to produce best solution
- Conditions
 - (assuming we don't throw away duplicates)
 - h(n) must never overestimate cost to goal
 - admissible heuristic
 - optimistic"
 - "Crow flies" heuristic is admissible







A* terminates with optimal solution

- Stop A* when you try to expand a goal state.
 This the best solution you can find.
- How do we know that we're done when the next state to expand is a goal?
 - A* always expands node with smallest f
 - At a goal state, f is exact.
 - Since heuristic is admissible, f is an underestimate at any non-goal state.
 - If there is a better goal state available, with a smaller f, there must be a node on graph with smaller f than that – so you would be expanding that instead!

More about A*

- Completeness
 - A* expands nodes in order of increasing f
 - Must find goal state unless
 - infinitely many nodes with f(n) < f*</p>
 - infinite branching factor OR
 - finite path cost with infinite nodes on it
- Complexity
 - Time: Depends on h, can be exponential
 - Memory: O(b^m), stores all nodes

Valuing heuristics

- Example: 8-puzzle
 - h1 = # of tiles in wrong position
 - h2 = sum of distances of tiles from goal position (1-norm, also known as Manhattan distance)
- Which heuristic is better for A*?

Which heuristic is better?

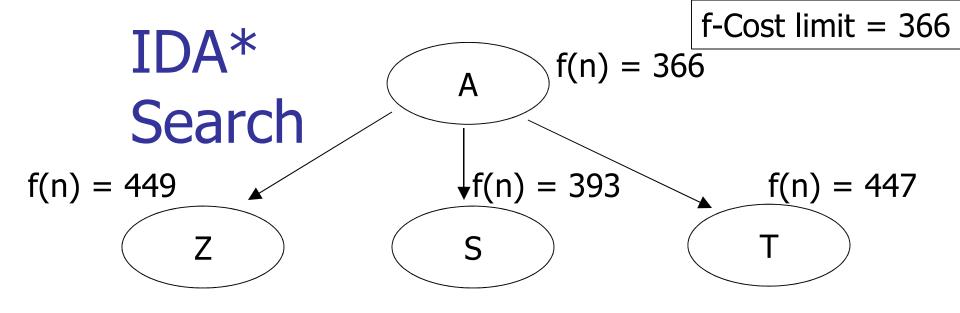
- h2(n) >= h1(n) for any n
 - h2 dominates h1
- A* will generally expand fewer nodes with h2 than with h1
 - All nodes with f(n) < C* (cost to best solution) are expanded.
 - Since h2 >= h1, any node that A* expands with h2 would also be expanded with h1
 - But A* may be able to avoid expanding some nodes with h2 (larger than C*)
 - (Exception where you might expand a state with h2 but not with h1: if f(n) = C*).
- Better to use larger heuristic (if not overestimate)

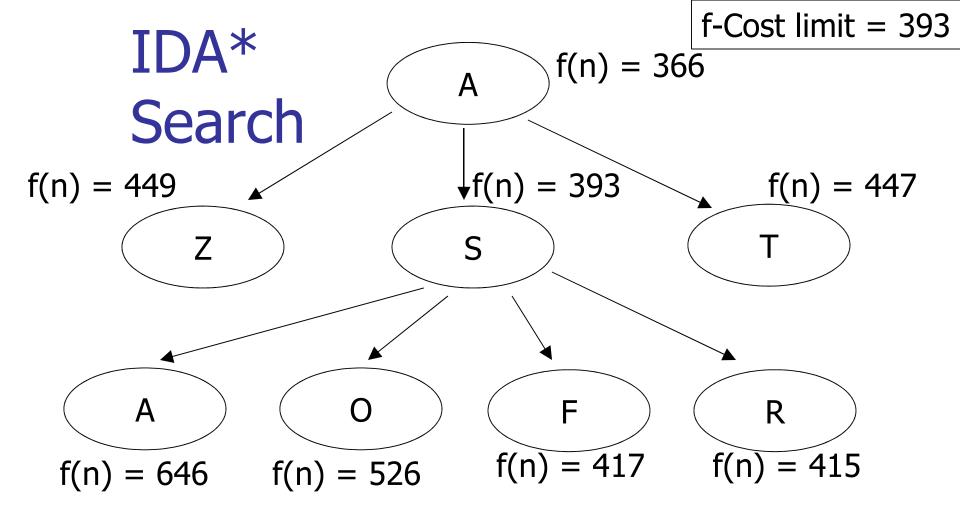
Inventing heuristics

- h1 and h2 are exact path lengths for simpler problems
 - h1 = path length if you could transport each tile to right position
 - h2 = path length if you could just move each tile to right position, irrelevant of blank space
- Relaxed problem: less restrictive problem than original
- Can generate heuristics as exact cost estimates to relaxed problems

Memory Bounded Search

- Can A* be improved to use less memory?
- Iterative deepening A* search (IDA*)
 - Each iteration is a depth-first search, just like regular iterative deepening
 - Each iteration is not an A* iteration: otherwise, still O(b^m) memory
 - Use limit on cost (f), instead of depth limit as in regular iterative deepening





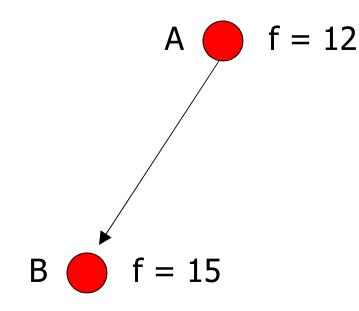
IDA* Analysis

- Time complexity
 - If cost value for each node is distinct, only adds one state per iteration
 - BAD!
 - Can improve by increasing cost limit by a fixed amount each time
 - If only a few choices (like 8-puzzle) for cost, works really well
- Memory complexity
 - Approximately O(bd) (like depth-first)
- Completeness and optimality same as A*

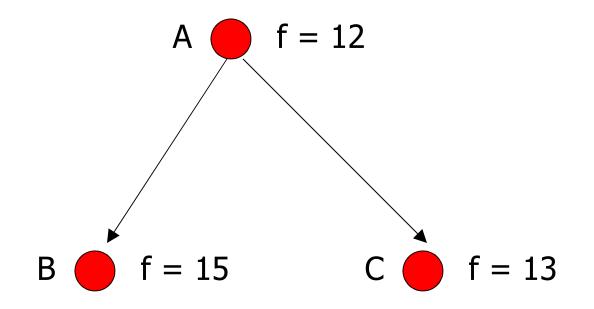
Simplified Memory-Bounded A* (SMA*)

- Uses all available memory
- Basic idea:
 - Do A* until you run out of memory
 - Throw away node with highest f cost
 - Store f-cost in ancestor node
 - Expand node again if all other nodes in memory are worse

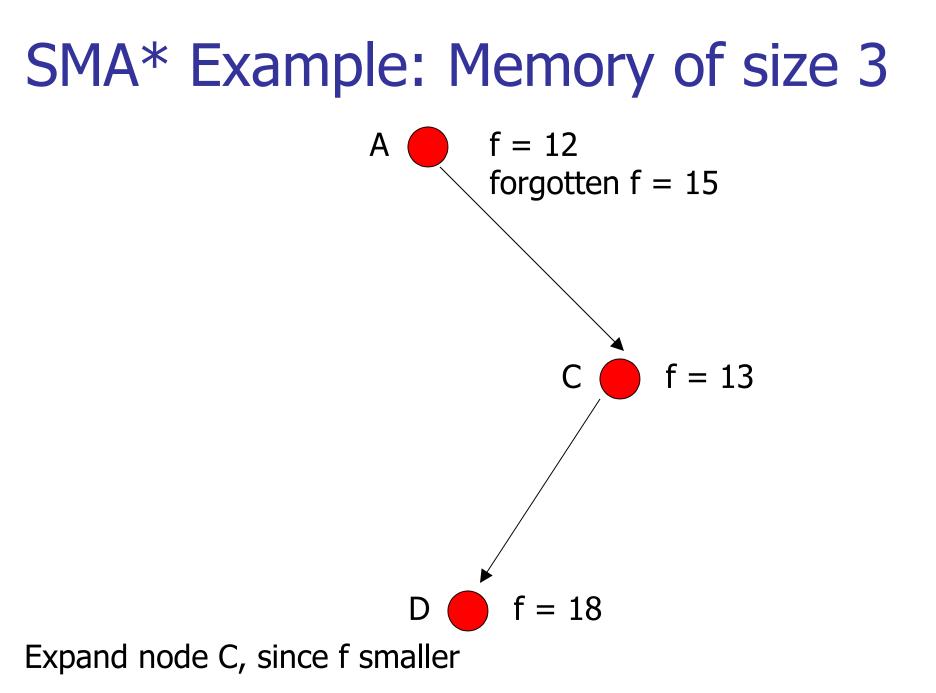
SMA* Example: Memory of size 3 A f = 12

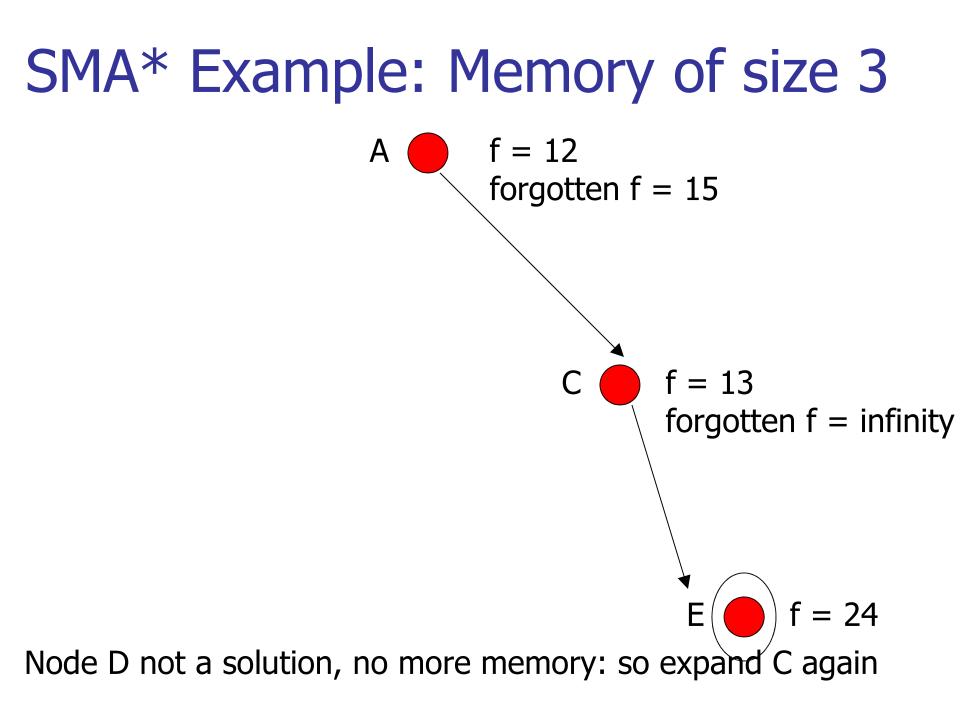


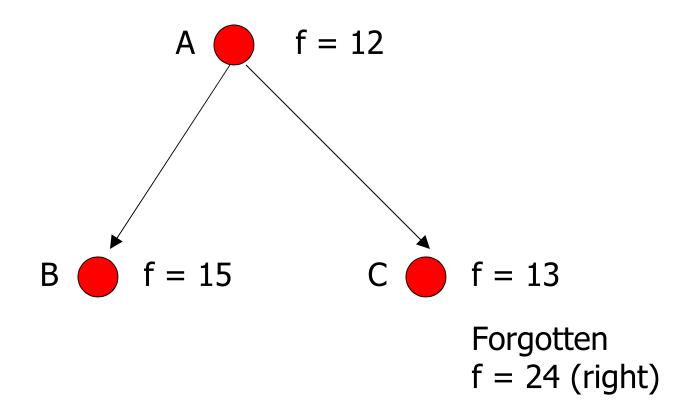
Expand to the left



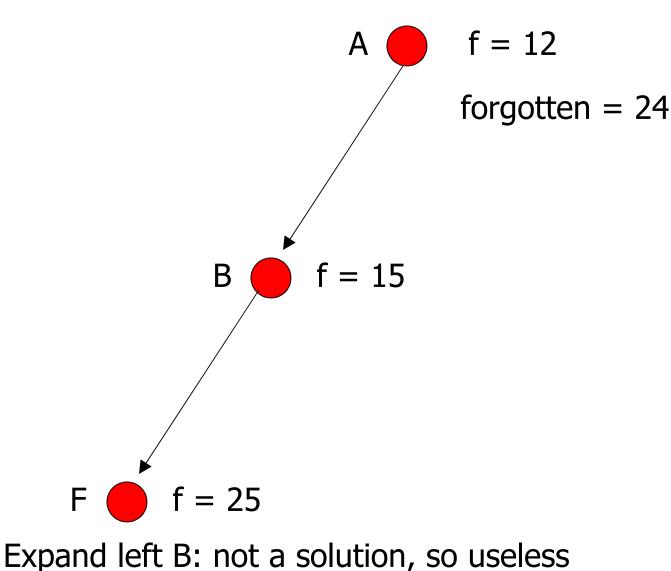
Expand node A, since f smaller

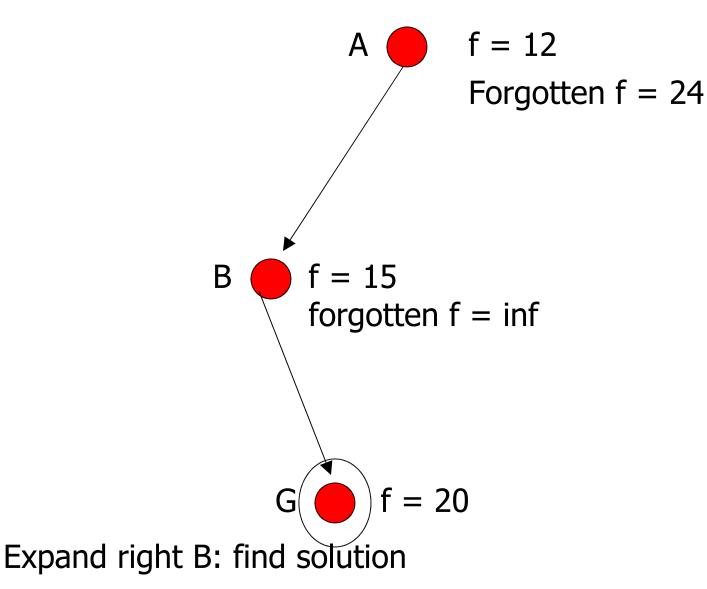






Re-expand A; record new f for C





SMA* Properties

- Complete if can store at least one solution path in memory
- Finds best solution (and recognizes it) if path can be stored in memory
 - Otherwise, finds best that can fit in memory