
CS 324: Data Mining
Locality Sensitive Hashing

Dave Musicant
Winter 2015

For this assignment, you’ll implement both locality based hashing (LSH) and a brute-force nearest
neighbor approach on a particular dataset. You’ll measure the difference in running times as well
as the differences in similarity between nearest neighbors. You should be able to see how much
faster LSH is, with similar accuracy.

In this assignment, we’ll be looking for nearest neighbors not for classification purposes, as we did
on the previous assignment; instead, we’re going to take a dataset of documents, and for each, find
all documents similar to it. This could be done via an awful O(n2) approach of comparing each
document to every other document, but we’ll do much better than that.

This approach can also be used for k-NN classification on unseen test data; we’ll talk about that
in class.

Programming Environment

I wrote this program in Python, and in the end it worked great. A major problem I had to
overcome, however, is that the timing numbers came out crazy when I used the typical Python
environment, i.e., the usual one you get when you type python. (Incidentally, this environment
is called “CPython”, because the environment itself is written in C.) That’s CPython interprets
the code that it runs, which is generally slow, but some specific built-in commands run under-the-
hood with compiled C code, which is fast. If you use more built-in compiled commands with the
brute-force algorithm, you’ll get the incorrect sense that the brute-force approach is dramatically
faster.

To resolve this, you need to use a programming environment where everything is compiled to
machine language or close before the program starts running. I ran my program with pypy, which
is a Python compiler that does exactly like this. Two fantastic things happened when I switched
to pypy:

• Both algorithms ran much faster than when running with python.

• The timing measurements all started to make sense.

You should similarly be able to program this using the standard Java, C, C++, or other environ-
ments that compile code to machine language before running. I believe, but am not entirely sure,
that R does not do this. Feel free to ask on Piazza if you have questions about your particular
programming environment.

Data

The data you’ll use for this assignment comes from the so-called “Bag of Words” dataset at the
UCI Machine Learning Repository. This dataset is actually four datasets; we’ll use the one called
enron. If you missed all of the news excitement a number of years ago regarding the collapse of the
energy company Enron, feel free to dig through some news archives to read about the scandal. This
remarkable dataset contains nearly 40,000 internal emails from the company that were released for
the public record.

1 of 6



CS 324: Data Mining
Locality Sensitive Hashing

Dave Musicant
Winter 2015

All four datasets are located this public directory. You’ll only need to look at the readme.txt file,
which explains the layout, and the file docword.enron.txt which contains the actual data. Note
that this file has been compressed via gzip, and so you’ll need to use the command gunzip to un-
compress it. Happily, this file has already converted all words to integers. The words themselves are
unnecessary for this exercise, but if you’re curious to see a list of them, they’re in vocab.enron.txt.
I’ve also placed these files within /Accounts/courses/cs324. Uncompressed, this file is about 47
MB, so do not place this in your home directory on our department network. Make sure that you
put the file somewhere local, such as /tmp.

This dataset contains counts for the number of times each word appears, but you’ll ignore the
count. Since we’re focusing on Jaccard similarity, you only need keep track of whether or not a
word appears.

Part 1: Comparing Jaccard Similarity with Minhashing

Start off by writing a program that reads in the above data in some fashion and stores it in some
kind of in-memory data structure. One word of warning: don’t store the data in dense-format, i.e.
with each column representing a document, each row representing a word, and using a 0 or a 1 to
indicate whether or not a word is present. The collection has approximately 28,000 unique words
and 40,000 documents. The above will take nearly all or more memory than your computer likely
has available – do the math and see. It would also be miserably slow and inefficient. I chose to
represent each document as a set of words. Both Python and Java have the ability to efficiently
manage sets (set and HashSet, respectively).

Reading in all 39,861 documents takes a while, and it is silly for you to wait for your program to
do this every time it runs while you are debugging (and while the graders are grading). Implement
the capability for your program to only read in the first n documents, and thus simulate the effect
of having a smaller dataset to work with. This is a very common trick practicioners use to debug
code that runs on large datasets; it’s much faster than running it on the whole dataset every time
you re-test your program.

Write code that allows you to compute the Jaccard similarity between two particular documents of
interest (as identified by their document id). If you have used built-in set capability as I did above,
this should be very, very easy using associated built-in set operation tools.

You should then also write code to produce a signature matrix with a specified number of rows.
As we’ve talked about, each row is a minhash associated with a random permutation of the rows
of the original characteristic matrix. You want to do this the efficient and fast way. Don’t actually
permute the dataset for each minhash; rather, generate a random hash function. I did this as in
the reading by generating hash functions that looked like h(x) = ax + b mod n where n was the
number of words in the dataset, and a and b where randomly chosen integers that ranged from 0
to n − 1. (You’ll want to make sure to choose a so that it’s relatively prime with n. That’s not
hard. but I’ll leave that as a little puzzle to think about.) This matrix should be stored as dense
in some sort of typical 2-dimensional matrix format.

Once you have produced the signature matrix, write code that allows you to use it to estimate the
Jaccard similarity between two particular documents (again identified by id). If you’re doing this

2 of 6

http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/


CS 324: Data Mining
Locality Sensitive Hashing

Dave Musicant
Winter 2015

correctly, you should be able to see that the estimate gets better and better as you increase the
number of rows in the signature matrix.

One warning: since you are using randomization in your program, make sure that you seed the
random number generator before you start. If you do not do this, your program will run differently
every time you run it, and make it nearly impossible to debug. There’s no reason that you need to
run your program differently every time; in fact, you want it to use the same sequence of “random”
permutations every time you run it.

To make grading as straightforward as possible, the program that you actually submit should do
the following:

• Do NOT submit the data file itself. We don’t need to waste space on Courses with multiple
copies of the same 47MB file.

• Specify exceedingly clearly in comments where the string is that contains the location and
name of the data file. Since the grader may have the file in a different location than you do,
the grader will have to modify this string in your program. Optimally, if you store your data
in /tmp, that’s the same place the grader will use. The grader will be particularly happy if
you use /tmp.

• Prompt the user to enter in the number of documents for your program to read in from the
file.

• Prompt the user to enter in two document id numbers. Note that the document ids are
indexed so they start at the number 1. You may wish to subtract 1 from all document ids
internally within your program to make hashing easier, but this should be hidden from the
user. The user should have the experience that the document id they type in is consistent
with the document ids that appear in the file.

• Print out the exact Jaccard similarity of these two documents.

• Prompt the user to enter in a number of rows to use for the signature matrix.

• Print out an estimate of the Jaccard similarity for these same two documents based on the
signature matrix.

Part 2: Finding nearest neighbors using both approaches

The brute-force approach

Add to your program the capability for finding the k nearest neighbors for a given document
ID, using a simple brute-force approach of computing the exact Jaccard similarity between this
document and the rest. Remember that Jaccard similarity increases with document similarity; it
is not a distance like the metrics that you used on the previous assignment.

As you iterate over all documents, you need to keep track of the k most similar documents you
have seen thus far, and which one has the smallest similarity so you can remove it if you find a

3 of 6



CS 324: Data Mining
Locality Sensitive Hashing

Dave Musicant
Winter 2015

better one. This is a perfect application for a priority queue, and I encourage you to use one for
this task. Both Python (heapq) and Java (PriorityQueue) have this capability built-in.

Once you have found the k nearest neighbors for a document ID of interest, average the Jaccard
similarities for those k neighbors to get a measure of how close the nearest neighbors for this
document are.

Finally, produce a single average score by “averaging the averages” to indicate with a single number
the quality of finding k nearest neighbors for all documents in the dataset.

Make sure that you test this on a small subset of your data, using the capability you implemented
in Part 1 for only reading in a subset. It will take way too long to run on the full dataset.

The LSH approach

Implement an LSH approach for finding the k nearest neighbors for a given document ID by imple-
menting the banding technique descrived in section 3.4.1 of the textbook. Specify as a parameter
in your code the number of rows in each band. Once you have done this, the number of bands can
be automatically determined based on the number of signatures that you have. Here’s how I chose
to implement it:

• I created a Python dictionary for each band. Specifically, I used a defaultdict as it made
the coding a little cleaner, but that’s not critical.

• Within each band, I looked at each document and implemented the technique described in
the second paragraph of Section 3.4.1, To hash a vector of r integers, I converted those into a
tuple, and used them as the key for the dictionary. (Python will let you use a tuple, but not
a list, as a dictionary key. Java does not, to the best of my knowledge, have this capability
built-in, and so you’ll need to implement your own wrapper object and hashCode method
accordingly. Or perhaps use a MultiValueMap, which I haven’t tried. You’d have to get this
installed.) The dictionary value I represented as a set of document IDs. This way, whenever
more than one document produced the same vector of r integers, I would store each of those
document IDs in the set.

• Once I had a Python dictionary for each band, for a given document I would find its nearest
neighors by first generating a set of candidates. Candidates were all documents IDs that
appeared in one or more of the same hash buckets as the document under consideration.

• One major problem that came up, with the textbook doesn’t tell you about, is that for any
given item you run the risk that there may identify fewer than k candidates. You can manage
this to some degree with an appropriate choices for k, r, and the number of rows in your
signature matrix; but ultimately, your code and your measurement has to be robust to this.
In the event that you cannot find k candidates, you should fill in the remaining neighbors
with choices chosen entirely at random from the rest of the dataset.

To make grading as straightforward as possible, the program that you actually submit should do
the following:

• Do NOT submit the data file itself. I’m pretty sure that you can’t, actually — I think Moodle
has a limit on the size of the file you can submit. That’s good: we don’t need to waste space

4 of 6

http://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections/map/MultiValueMap.html


CS 324: Data Mining
Locality Sensitive Hashing

Dave Musicant
Winter 2015

on a file submission server with 30 copies of the same 47MB file.

• Specify exceedingly clearly in comments where the string is that contains the location and
name of the data file. Since the grader may have the file in a different location than you do,
the grader will have to modify this string in your program. Optimally, if you store your data
in /tmp, that’s the same place the grader will use.

• Prompt the user to enter in the number of documents for your program to read in from the
file.

• Prompt the user to enter in k, the number of nearest neighbors.

• Prompt the user to enter in a number of rows to use for the signature matrix.

• Prompt the user to enter r, the number of rows in each band.

• Calculate the average value of the average similarity for all documents using the brute force
approach. Also measure how long it takes. Make sure that your code prints out intermediate
results while it’s working so the grader knows it is still working.

• Calculate the average value of the average similarity for all documents using LSH. Also
measure how long it takes, and measure how many documents had at least one document
chosen at random as its nearest neighbor.

Written report

Submit a written “lab report” describing what you find from an experimental perspective. How
does the performance of LSH compare to brute-force, with respect to average similarity and running
time? How does this vary with datset size, k, r, and number of rows in signature matrix? Your
report should show some plots to show how these variables affect the result, and some commentary
by you explaining the results you see, and why they are occurring.

Final Thoughts

Here is a collection of random advice and suggestions, based on scanning through the final Python
code that I wrote. Some of this may repeat other comments made above. In some cases I’ll give
advice for Python or Java; if you’re using another language, you’ll have to appropriately adapt.

• Seed your random number generator. You want this program to behave the same way every
time you run it. Read the documentation on the Python random module or the Java Random

class if you don’t know how to do this.

• Organize your program from the very beginning so that you can read in only a subset of the
documents of size that you pick. To debug your code, you want it to run quickly, and running
it on all the documents every time you test it is exceedingly slow.

• Heavily use built-in capabilities for managing sets, including operations such as intersection,
union, and difference. Don’t reinvent this yourself.

5 of 6



CS 324: Data Mining
Locality Sensitive Hashing

Dave Musicant
Winter 2015

• Use built-in capabilities for managing priority queues, if your language offers it. Don’t reinvent
that yourself.

• For any portion of your code that runs slowly, print updates to the screen regularly so that you
can tell what it’s doing, and so you can guess how long it will take the entire program to run.
During slow loops, I typically print out a count every 100 rows or every 1000 rows. You may
need to flush the output buffer when you do this, to ensure that the output you see is timed
consistently with the code that is running. In Python, you do this via sys.stdout.flush().
In Java, you use System.out.flush().

• If you are programming in Python, use pypy. Do not use the regular python command.

• If you are programming in Python, it is super useful to learn list comprehensions if you
haven’t come across them before. They’re never critical, but they can really condense your
code.

• Don’t interactively enter in the values of your parameters every time your run your program.
Hard code them in, or use command-line parameters. Your debugging will go MUCH faster
if you don’t have to type the values in every time you run your program. I asked you to make
them keyboard inputs to make it easier for the graders, but you should make that change
when you are nearly done.

Have fun with this! This assignment is challenging, but I think you’ll learn a whole lot about
minhashing, LSH, and possibly some programming along the way.

6 of 6

http://docs.python.org/2/tutorial/datastructures.html#list-comprehensions

