CS 324: Data Mining Dave Musicant
Association Rules Winter 2015

Description

For this assignment, you will look for frequent itemsets and association rules in a movie ratings
dataset. See if you can learn about what movies tend to be watched by the same people.

The data

WEe’ll be using MovieLens data for this assignment. The MovieLens project is a movie recom-
mendation project based at the University of Minnesota. Using movie recommendation data isn’t
precisely the right sort of data one uses for association rules, but if you throw away the rating
information and think of each person as a “basket,” it works perfectly and is fun.

Here’s a caveat. There are better algorithms for making movie recommendations based on ratings
that we’ll look at later in the term. I’'m merely using the MovieLens data here because it’s an easily
obtainable example that works. It is actually extremely difficult to find datasets that are better fits
for association rules data that are freely available, easy to interpret, and produce results that are
at least somewhat interesting. I've tried multiple times and failed. If you can find an interesting
free dataset that is well-suited for association rules problems, please send me a link to it. Many of
them are designed for showing how fast your algorithm is, and so they merely have item ids without
description; so you can’t interpret the result. I was excited about this bakery dataset for a while,
until I realized that the products were nearly entirely limited to different types of cakes and tarts.
Learning that people who buy lemon cookies also buy apple danishes seemed underwhelming and
only made me hungry.

The MovieLens datasets come in three sizes. We’ll be using the medium sized dataset, which
contains 1 million ratings over 6040 users. The larger dataset is actually more interesting, but
starts to run considerably slower unless you think really carefully about how to optimize everything
you're doing. I'm declaring that we’ll use the medium dataset as the basis for this assignment, but
after you have everything working for the medium-sized dataset, feel free to experiment with an
additional version of your project that works on the large dataset if you like. The large dataset
is formatted a little differently, however, so make sure the version that you actually submit works
with the medium one.

When you download the zip file, make sure that you do not put it into your shared network directory.
If you are using a lab machine, put it in /tmp. You’ll find within it a “ratings” file in each where
each line contains a user id, a movie id, and some other information. It’s the user id and the movie
id that you want. When you read this data, you should transform each user into a “basket” so that
you end up with a set of movies watched for each user. Throw away the rating info. Do this all
in memory; there’s no need to write out another file containing the rearranged data, since this will
all fit in memory.

1of 3


https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery
http://www.grouplens.org/node/73
http://www.grouplens.org/system/files/ml-1m.zip

CS 324: Data Mining Dave Musicant
Association Rules Winter 2015

Frequent itemsets and Association Rules

Implement the Apriori algorithm to find frequent itemsets on this dataset. Your program should
ask the user to input a support threshold and a confidence threshold. First, your program should
print out all frequent itemsets that have this level of support or higher. Though you should use
movie ids only throughout your entire program, at this point you should connect those movie ids
back to their names so that the output is more interesting to look at. Second, you should print out
all association rules that you can generate from those frequent itemsets that meet the confidence
threshold.

Efficiency and Grading

Grading this assignment is partially easier than some other recent ones in that there is a clear right
answer for a given support and confidence threshold. The trickier challenge is to see if you are
writing your code efficiently. There are many, many things that you can do to make this fast, some
of which we’ve discussed in class. I'd encourage you to play with your code and see what you can
do. There are two main techniques, however, that I want to make sure that you use:

1. You should particularly implement the approach we discussed where you generate candidates
of size n + 1 by combining frequent itemsets of size n that match on the first n — 1 terms,
and then eliminating those with other subsets that are not frequent.

2. You should count candidate itemsets efficiently by storing their counts in a hash tree.

Both of these approaches, which we’re doing in class, are described well in another textbook that
we’re not using. That textbook is not available in its entirety online, but the portion that describes
the above content is. You can read about these approaches in the Tan, et al. data mining book;
the content is in Chapter 6. The first approach above is described on page 341 as the Fj_1 X Fj_1
method; the hash tree is explained on page 344.

You should print out the number of candidate itemsets you have of each size right before you go
back to the data to actually count. This will also help the graders determine if you are implementing
as specified.

I’'m going to be instructing the graders to look at your code in order to verify that it appears you're
using the above approaches correctly. You must make it as clear in your code as you possibly can
how you are doing it. Write your code in a way so as to be as clear as possible, and supplement with
comments to explain what you are doing. Your job is to make a convincing argument with your
code that you are doing this correctly. I'll be instructing the graders that they can take points off
if they cannot determine to their satisfaction that these algorithms are not correctly implemented;;
this could be because they are not done right, or because the code is hard to understand (or both!).

20of 3


http://www-users.cs.umn.edu/~kumar/dmbook/

CS 324: Data Mining Dave Musicant
Association Rules Winter 2015

Breaking it Down

Part 1: Turn in a program that takes as input a support threshold, and prints out all itemsets of
size 1 that have that level of support. You don’t need to do this using any of the fancier approaches
described above, though you can. The goal of part 1 is to get you started.

Part 2: Turn in the entire assignment as described above.

Optional extension for fun: Many of the rules that you get will be true, but obviously so.
That’s a great way to confirm that your code is working, but also lacks some zing. Experiment
with approaches to get interesting rules. If you do this, make sure to distinguish it as separate
from the standard assignent as specified.

30of3



