
Clue Deduction: an introduction to satisfiability reasoning

Todd W. Neller∗, Zdravko Markov, Ingrid Russell, Dave Musicant†

May 15, 2008

1 Introduction

Clue R©1 is a mystery-themed game of deduction. The goal of the game is to be the first player to
correctly name the contents of a case file: the murder suspect, the weapon used, and the room the
murder took place in. There are 6 possible suspects, 6 possible weapons, and 9 possible rooms, each
of which are pictured on a card. One card of each type is chosen randomly and placed in a “case file”
envelope without being revealed to any player. All other cards are dealt out face-down to the players.
Each player takes on the identity of one of the suspects.

Each player thus begins with private knowledge that their dealt cards are not in the case file. As the
game proceeds, players suggest possible suspect, weapon, and room combinations, and other players
refute these suggestions by privately revealing such cards to the suggester. This type of game is called
a knowledge game, and the basic knowledge of the game may be expressed using propositional
logic.

In this project, we will study:

• Propositional logic syntax (structure) and semantics (meaning),

• Conjunctive normal form (CNF),

• Resolution theorem proving, and

• Application of a SAT solver to Clue.

The result will be a reasoning engine which yields “expert” deductions for the play of Clue. Ad-
ditionally, we will discuss deductive learning, inductive learning, knowledge acquisition, and possible
advanced projects.

2 Propositional Logic

In this section, we give a brief overview of propositional logic (a.k.a. Boolean logic and sentential
logic). For a more complete introduction, see Chapter 7 of your textbook.

Propositional logic is a simple logic based upon the Boolean values true and false. Many program-
mers will find propositional logic intuitive from exposure to Boolean types and logical operators which
occur frequently in programming.
∗Corresponding author: tneller@gettysburg.edu, Gettysburg College, Department of Computer Science, Campus Box

402, Gettysburg, PA 17325-1486
†Made modifications for Python, as well as some other smaller changes
1A.k.a. Cluedo R© in other parts of the world

1

In discussing a logic, one needs to address both the syntax (structure) and the semantics (mean-
ing) of the language. Just as the syntax of a programming language defines rules for what constitutes a
well-formed program, the syntax of a logical language defines rules for what constitutes a well-formed
sentence of the logic. Just as programming language specifications help the programmer understand the
expected behavior of a program, the semantics of a logical language define the meaning of well-formed
sentences of the logic. We will present the syntax and semantics of propositional logic one simple piece
at a time.

The atomic sentence is the simplest fundamental unit of the language. The syntax of an atomic
sentence is either the constant true, the constant false, or a symbol. Each symbol is associated with a
statement which can be true or false. For example, piwh may symbolize the statement that “The Mrs.
White player is holding the Lead Pipe card.” This statement may be true or false. In general, cp will
symbolize the statement “The card c is in place p.”

Often, the symbols used for atomic sentences are capital alphabetic characters A, B,C, ..., Z, but
we are free to choose whichever symbols are convenient. However, just as with commenting variables
in a program, it is important to attach meanings to these symbols to ground them in the reality they
represent.

Example Problem: Suppose that liars always speak what is false, and truth-tellers
always speak what is true. Further suppose that Amy, Bob, and Cal are each either a liar
or truth-teller. Amy says, “Bob is a liar.” Bob says, “Cal is a liar.” Cal says, “Amy and
Bob are liars.” Which, if any, of these people are truth-tellers?

The atomic sentences for this problem are as follows:

• A - Amy is a truth-teller.

• B - Bob is a truth-teller.

• C - Cal is a truth-teller.

Negation (¬, “not”): More complex sentences may be built from these. The negation of A,
denoted ¬A (read “not” A), means the opposite of A, and thus means “Amy is not a truth-teller.”
Given our constraint that Amy is either a truth-teller or liar, this also means “Amy is a liar.” The
negation operator ¬ operates on a single sentence, negating its meaning. Thus for propositional logic
sentence s, ¬s has the opposite truth value. We may thus express the semantics of ¬ in a truth table:

s ¬s

false true
true false

A literal is an atomic sentence or its negation. For example, A, ¬A, B, ¬B, C, and ¬C are all
literals.

Conjunction (∧ “and”): We have seen how “Amy is a liar.” can be represented as ¬A. Similarly,
“Bob is a liar.” can be represented as ¬B. To say “Amy and Bob are liars.” is to say that both ¬A
and ¬B are true. We denote this conjunction of sentences as ¬A∧¬B (read “not A and not B”). If
either or both of the two subsentences ¬A or ¬B are false, then the conjunction is false as well. The
semantics of ∧ for sentences s1 and s2 are thus expressed in this truth table:

s1 s2 s1 ∧ s2

false false false
false true false
true false false
true true true

2

Disjunction (∨ “or”): Suppose that you are playing Miss Scarlet and Mrs. White suggests that
Colonel Mustard committed the murder with the knife in the hall. Mr. Green refutes this suggestion
by privately showing one of the cards Mustard, Knife, or Hall privately to Mrs. White. You hold the
Mustard card. Thus you know that Mr. Green has either the Knife card or the Hall card. We may
represent this knowledge as the disjunction kngr ∨ hagr (read “kngr or hagr”). If either or both of
the two subsentences ¬A or ¬B are true, then the disjunction is true as well. The semantics of ∨ for
sentences s1 and s2 are thus expressed in this truth table:

s1 s2 s1 ∨ s2

false false false
false true true
true false true
true true true

Conditional (⇒ “implies”): In our truth-teller and liar example, Amy says “Bob is a liar.”. If
Amy is a truth-teller (A), then we know that Bob is a liar (¬B). We may represent this knowledge as
the conditional (a.k.a. implication) A⇒ ¬B (read “A implies not B”). If the first subsentence s1, the
antecedent, is true, and the second subsentence s2, the consequent, is false, then the conditional is
false. Otherwise, it is true. The semantics of⇒ for sentences s1 and s2 are thus expressed in this truth
table:

s1 s2 s1 ⇒ s2

false false true
false true true
true false false
true true true

Biconditional (⇔ “if and only if”): In the previous example, A ⇒ ¬B is not the only fact
we represent from Amy saying that Bob is a liar. We also know that if we find that Bob is, in fact,
a liar, then Amy must be a truth-teller. That is ¬B ⇒ A. Combining these facts in a conjunction,
we fully represent the knowledge as (A ⇒ ¬B) ∧ (¬B ⇒ A). This conjunction of two conditionals
with antecedents and consequents reversed has a more compact representation as the biconditional
A ⇔ ¬B. If the first subsentence s1 and the second subsentence s2 have the same truth value, the
biconditional is true. Otherwise, it is false. The semantics of ⇔ for sentences s1 and s2 are thus
expressed in this truth table:

s1 s2 s1 ⇔ s2

false false true
false true false
true false false
true true true

As with arithmetic expressions, there is an order of precedence of the operators. The negation
operator (¬) has highest precedence, followed by ∧, ∨, ⇒, and ⇔. Thus,

¬A ∧B means (¬A) ∧B

A ∨B ⇔ C means (A ∨B)⇔ C

¬A ∨B ∧ C means (¬A) ∨ (B ∧ C)
etc.

3

Here, we’ve used parentheses to clarify operator grouping, but parentheses may also be used to
group operations as desired (e.g. ¬(A∧B)), or improve readability (e.g. (A∧B)∨ (C ∧D)∨ (E ∧F)).

This is whole of the syntax and semantics may thus be summarized with the following Backus-Naur
Form (BNF) grammar, where the Symbol set is chosen and defined by the logician:

Sentence → Atomic Sentence | Complex Sentence
Atomic Sentence → true | false | Symbol

Complex Sentence → ¬Sentence | Sentence ∧ Sentence | Sentence ∨ Sentence
| Sentence ⇒ Sentence | Sentence ⇔ Sentence

Above, the BNF “→” roughly means “is a” and the BNF “|” means “or”, so that the first syntax
rule (or production) means “A sentence is either an atomic sentence or a complex sentence.”

The set of sentences that represent our knowledge is called our knowledge base. For example, the
knowledge base for our liars and truth-tellers problem is:

{A⇔ ¬B, B ⇔ ¬C, C ⇔ ¬A ∧ ¬B}

Note that these sentences could all be combined with conjunction in a single sentence which expresses
all knowledge of the knowledge base:

(A⇔ ¬B) ∧ (B ⇔ ¬C) ∧ (C ⇔ ¬A ∧ ¬B)

If we think of our atomic sentence symbols as boolean variables, then an assignment to all variables
would be called a truth assignment. A truth assignment which makes a sentence s true is said to
satisfy s. This satisfying truth assignment is also called a model of s. Another way to think about it
is that each truth assignment is a “world”, and that the models of s are “possible worlds”. If and only
if s has a model, s is said to be satisfiable. If and only if s has no model, s is said to be unsatisfiable.
If and only if every truth assignment is a model of s, then s is said to be valid or a tautology.

Now let us consider two sentences s1 and s2. We say that s1 entails s2, denoted s1 |= s2, if and
only if every model of s1 is also a model of s2. Sometimes this is expressed by saying that “s2 logically
follows from s1”. Two sentences s1 and s2 are logically equivalent if and only if s1 |= s2 and s2 |= s1.

3 Conjunctive Normal Form (CNF)

Propositional knowledge which is expressed as a conjunction of disjunctions of literals is said to be in
conjunctive normal form (CNF). Recall that a literal is an atomic sentence or a negated atomic
sentence. A disjunction (or) of literals is often referred to as a clause. Conjunctive normal form is a
conjunction (and) of such clauses.

Any sentence can be converted to CNF. We will describe the steps of this process and show how
the liar and truth-teller example knowledge base may be converted to CNF.

1. Eliminate ⇔. Replace each occurrence of s1 ⇔ s2 with the equivalent (s1 ⇒ s2) ∧ (s2 ⇒ s1).
Thus, the knowledge base

{A⇔ ¬B, B ⇔ ¬C, C ⇔ ¬A ∧ ¬B}

may be rewritten as

4

{(A⇒ ¬B) ∧ (¬B ⇒ A), (B ⇒ ¬C) ∧ (¬C ⇒ B), (C ⇒ ¬A ∧ ¬B) ∧ (¬A ∧ ¬B ⇒ C)}

We noted before that the set of knowledge base sentences could all be combined with conjunction
in a single equivalent sentence. At any time, we can use this equivalence in the opposite direction
to separate conjunctions into separate sentences of the knowledge base:

{A⇒ ¬B, ¬B ⇒ A, B ⇒ ¬C, ¬C ⇒ B, C ⇒ ¬A ∧ ¬B, ¬A ∧ ¬B ⇒ C}

2. Eliminate ⇒. Replace each occurrence of s1 ⇒ s2 with the equivalent ¬s1 ∨ s2. With such
replacements, our knowledge base becomes:

{¬A ∨ ¬B, ¬¬B ∨A, ¬B ∨ ¬C, ¬¬C ∨B, ¬C ∨ ¬A ∧ ¬B, ¬(¬A ∧ ¬B) ∨ C}

3. Move ¬ inward. In CNF, negation (¬) only occurs in literals before atomic sentence symbols.
All occurrences of ¬ can either be negated or “moved” inward towards the atomic sentences using
three equivalences:

de Morgan’s law ¬(s1 ∧ s2) ≡ ¬s1 ∨ ¬s2

¬(s1 ∨ s2) ≡ ¬s1 ∧ ¬s2

double ¬ elimination ¬¬s ≡ s

Using these equivalences, our knowledge base is rewritten:

{¬A ∨ ¬B, B ∨A, ¬B ∨ ¬C, C ∨B, ¬C ∨ ¬A ∧ ¬B, A ∨B ∨ C}

The last sentence was rewritten in multiple steps:

¬(¬A ∧ ¬B) ∨ C ≡ (¬¬A ∨ ¬¬B) ∨ C ≡ (A ∨ ¬¬B) ∨ C ≡ (A ∨B) ∨ C ≡ A ∨B ∨ C

4. Distribute ∨ over ∧. That is, move disjunction (∨) inward while moving conjunction (∧)
outward to form a conjunction of disjunctions. This is accomplished through distributivity of ∨:

s1 ∨ (s2 ∧ s3) ≡ (s1 ∨ s2) ∧ (s1 ∨ s3)
(s1 ∧ s2) ∨ s3 ≡ (s1 ∨ s3) ∧ (s2 ∨ s3)

Thus we can rewrite our knowledge base:

{¬A ∨ ¬B, B ∨A, ¬B ∨ ¬C, C ∨B, (¬C ∨ ¬A) ∧ (¬C ∨ ¬B), A ∨B ∨ C}

or
{¬A ∨ ¬B, B ∨A, ¬B ∨ ¬C, C ∨B, ¬C ∨ ¬A, ¬C ∨ ¬B, A ∨B ∨ C}

This is sometimes more compactly expressed as a set of a set of literals, where the sets of literals
are implicitly understood as clauses (disjunctions) and the set of these is implicitly understood
as the knowledge base, a conjunction of known sentences:

{{¬A,¬B}, {B, A}, {¬B,¬C}, {C, B}, {¬C,¬A}, {¬C,¬B}, {A, B,C}}

It is important to note that a model in CNF is a truth assignment that makes at least one literal
in each clause true.

5

4 Resolution Theorem Proving

Consider the two clauses {B, A} and {¬B,¬C} of our example CNF knowledge base. The first reads,
“Bob is a truth-teller or Amy is a truth-teller.” The second reads, “Bob is not a truth-teller or Cal is
not a truth-teller.” Consider what happens according to Bob’s truthfulness:

• Bob is not a truth-teller. The second clause is satisfied. The first clause is satisfied if and
only if Amy is a truth-teller.

• Bob is a truth-teller. The first clause is satisfied. The second clause is satisfied if and only if
Cal is not a truth-teller.

Since one case or the other holds, we know in any model of both clauses that Amy is a truth-teller or
Cal is not a truth-teller. In other words, from clauses {B, A} and {¬B,¬C}, we can derive the clause
{A,¬C} and add it to our knowledge base. This is a specific application of the resolution rule.

In general, we can express the resolution rule as follows: Given a clause {l1, l2, . . . , li, A} and
{¬A, li+1, li+2, . . . , ln}, we can derive the clause {l1, l2, ..., ln}. If A is false, one of the other first clause
literals must be true. If A is true, one of the other second clause literals must be true. Since A must
be either true or false, then at least one of all the other n literals must be true.

Not all possible resolution rule derivations are useful. Consider what happens when we apply the
resolution rule to the first two clauses of our example knowledge base. From {¬A,¬B} and {B, A}, we
can derive either {¬A, A} or {¬B, B} depending on which atomic sentence we use for the resolution.
In either case, we derive a tautology. The clause {¬A, A} is always true. It reads “Amy is not a
truth-teller or Amy is a truth-teller.”

In order to direct our derivations towards a simple goal, we will perform proof by contradiction2.
The basis of this style of proof is the fact that s1 |= s2 if and only if (s1 ∧ ¬s2) is unsatisfiable. Put
another way, every truth assignment that makes s1 true also makes s2 true if and only if there exists
no truth assignment where s1 is true and s2 is false.

The application of this principle is simple. Suppose that sentence s1 represents our knowledge
base, and that we wish to wish to prove that sentence s2 follows from s1. We simply add ¬s2 to our
knowledge base and seek to derive a contradiction. We take what we believe must follow, and prove
it by showing that the opposite causes a contradiction. This approach is not only effective in human
argument, but is important for automated theorem proving as well.

Let us use this approach to prove that Cal is a liar (¬C). In addition to the knowledge base, we
assume the negation of what we wish to prove (¬¬C, that is C). We will number our clauses to the
left. To the right, we will list the clause numbers used to derive the clause by resolution.

(1) {¬A,¬B} Knowledge base
(2) {B, A}
(3) {¬B,¬C}
(4) {C, B}
(5) {¬C,¬A}
(6) {¬C,¬B}
(7) {A, B, C}
(8) {C} Assumed negation
(9) {¬A} (5),(8) Derived clauses

(10) {B} (2),(9)
(11) {¬C} (3),(10)
(12) {} (8),(11) Contradiction!

2a.k.a. reductio ad absurdum

6

Recall that at least one literal of each clause must be true for a truth assignment to be a model.
This last empty clause has no literals at all and represents a clear contradiction. To see why, consider
the resolution that led to it. In (10) and (11) we declare a fact and its negation to be true. The
resolution rule leaves us no literals to be made true to satisfy these clauses. A clause with no literals
is thus logically equivalent to false. Since we hold each clause to be true, we have in effect shown that
false is true. This is a contradiction. Thus it cannot be the case that {C} is true as we had assumed.
Thus {¬C} logically follows from our knowledge base.

It should be noted that an unsatisfiable knowledge base will derive an empty clause without any
need of assumption. One can thus prove any sentence using proof by contradiction and starting with
a contradictory knowledge base.

If one cannot derive a contradiction in this manner, then there is a satisfying truth assignment for
the knowledge base and the assumed negation of the hypothesis one sought to prove.

For practice, the reader should perform two resolution proofs by contradiction that

• Amy is a liar, and

• Bob is a truth-teller.

When we derive a sentence s2 from sentence s1, we denote it s1 ` s2. A proof procedure that derives
only what is entailed is called sound. A proof procedure that can derive anything that is entailed is
called complete. Resolution theorem proving is both sound and complete.

5 DIMACS CNF Format

Resolution theorem proving seeks to answer the question “Is the knowledge base plus the negated
hypothesis satisfiable?” There is an intense research effort underway for high-performance satisfiability
solvers. Each year, there is a satisfiability software competition. The most common problem input
format is the DIMACS CNF Format.

We introduce the DIMACS CNF Format by example. Clauses (1)-(8) of the previous proof might
be encoded as follows:

c Truth-teller and liar problem
c 1: Amy is a truth-teller.
c 2: Bob is a truth-teller.
c 3: Cal is a truth-teller.
c
p cnf 3 8
-1 -2 0
2 1 0
-2 -3 0
3 2 0
-3 -1 0
-3 -2 0
1 2 3 0
3 0

According to the 2004 SAT competition documentation3,

The file can start with comments, that is, lines beginning with the character c.
3See URL http://satlive.org/SATCompetition/2004/format-benchmarks2004.html.

7

Right after the comments, there is the line p cnf nbvar nbclauses indicating that the
instance is in CNF format; nbvar is an upper bound on the largest index of a variable
appearing in the file; nbclauses is the exact number of clauses contained in the file.

Then the clauses follow. Each clause is a sequence of distinct non-null numbers between
-nbvar and nbvar ending with 0 on the same line; it cannot contain the opposite literals
i and -i simultaneously. Positive numbers denote the corresponding variables. Negative
numbers denote the negations of the corresponding variables.

Each atomic sentence (called a variable above) is associated with a positive integer. Thus, literals
are represented by integers other than 0, which is used to terminate clauses.

The output when running the SAT solver zChaff4 on our example is as follows:

Z-Chaff Version: Chaff II
Solving example.cnf
CONFLICT during preprocess

Instance Unsatisfiable
Random Seed Used 0
Max Decision Level 0
Num. of Decisions 0
(Stack + Vsids + Shrinking Decisions) 0 + 0 + 0
Original Num Variables 3
Original Num Clauses 8
Original Num Literals 16
Added Conflict Clauses 0
Num of Shrinkings 0
Deleted Conflict Clauses 0
Deleted Clauses 0
Added Conflict Literals 0
Deleted (Total) Literals 0
Number of Implication 3
Total Run Time 0
RESULT: UNSAT

The contradiction was found quickly during the preprocessing stage of the solver and it reports that
the clauses are unsatisfiable (UNSAT).

6 SAT-solver

In order to aid Python programmers in working with zChaff (written in C++) we have created support
Python code called SATSolver, described in this section.

Clauses in SATSolver are represented in lists. A clause is a sequence of non-zero integers much like
the DIMACS CNF format clause lines, but without 0 termination.

SAT-solver provides two functions for invoking zChaff:

testKb(clauses)
testLiteral(literal,clauses)

4See URL http://www.princeton.edu/%7Echaff/zchaff.html.

8

testKb is used for testing to see if a particular knowledge base is satisfiable. It writes a DIMACS
CNF query file, and executes zChaff as an external process. The result returned will be True if the
combined clauses are satisfiable, and False otherwise.

Often, the user will simply want to know at a given point if a literal can be proved true/false or not
relative to a previously consructed knowledge base. For this, we use the the testLiteral function can
be used. It returns one of the symbols True, False, and None, which represent whether a particular
literal is true, false, or unprovably neither relative to the knowledge base.

Here we provide a test case in which we take our liar and truth-teller example and apply the
SAT-solver code.

clauses = [[-1,-2],[2 ,1],[-2,-3],[3,2],[-3,-1],[-3, -2],[1,2,3]]
print ’Knowledge base is satisfiable:’,testKb(clauses)
print ’Is Cal a truth-teller?’,
result = testLiteral(3,clauses)
if result==True:

print ’Yes.’
elif result==False:

print ’No.’
else:

print ’Unknown.’

This code may be used to efficiently solve the exercises of the next section.

9

7 Exercises

For each of the following problems (which you may or may not be assigned to do), there are four
exercises:

(a) Express all relevant problem facts as a propositional logic knowledge base. Clearly explain the
meaning of your propositional symbols.

(b) Convert the propositional logic knowledge base to CNF.

(c) Use resolution theorem proving to solve the problem.

(d) Solve the problem computationally with a SAT solver.

Exercise (a) should precede (b) which should in turn precede (c) and (d).

Problems:

1. Horn Clauses: (from Russell and Norvig, Exercise 7.9) If the unicorn is mythical, then it is
immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal
or a mammal, then it is horned. The unicorn is magical if it is horned.

(a) Can we prove that the unicorn is mythical?

(b) Can we prove that the unicorn is magical?

(c) Can we prove that the unicorn is horned?

2. Liars and Truth-tellers 1: (adapted from OSSMB5 82-12) Three people, Amy, Bob, and Cal,
are each either a liar or a truth-teller. Assume that liars always lie, and truth-tellers always tell
the truth.

• Amy says, “Cal and I are truthful.”

• Bob says, “Cal is a liar.”

• Cal says, “Bob speaks the truth or Amy lies.”

What can you conclude about the truthfulness of each?

3. Liars and Truth-tellers 2: (adapted from OSSMB 83-11) Three people, Amy, Bob, and Cal,
are each either a liar or a truth-teller. Assume that liars always lie, and truth-tellers always tell
the truth.

• Amy says, “Cal is not honest.”

• Bob says, “Amy and Cal never lie.”

• Cal says, “Bob is correct.”

What can you conclude about the truthfulness of each?

4. Robbery and a Salt: (from OMG6 22.1.1) The salt has been stolen! Well, it was found that
the culprit was either the Caterpillar, Bill the Lizard or the Cheshire Cat. The three were tried
and made the following statements in court: CATERPILLAR: Bill the Lizard ate the salt. BILL
THE LIZARD: That is true! CHESHIRE CAT: I never ate the salt.

As it happened, at least one of them lied and at least one told the truth. Who ate the salt?
5Ontario Secondary School Mathematics Bulletin
6Ontario Mathematical Gazette

10

5. Multiple Choice: (adapted from CRUX7 357) In a certain multiple-choice test, one of the
questions was illegible, but the choice of answers was clearly printed.

(a) All of the below.

(b) None of the below.

(c) All of the above.

(d) One of the above.

(e) None of the above.

(f) None of the above.

Assuming that more than one answer may be true, divide answers into three groups:

• those that are necessarily true,

• those that are necessarily false, and

• those that could be true or false.

How many different possible ways are there to consistently circle true subset(s) of answers? List
the subset(s).

6. A Sanctum for the Good En-doors-ment: (from CRUX 357) There are four doors X, Y , Z
and W leading out of the Middle Sanctum. At least one of them leads to the Inner Sanctum. If
you enter a wrong door, you will be devoured by a fierce dragon.

Well, there were eight priests A, B, C, D, E, F , G and H, each of whom is either a knight or a
knave. (Knights always tell the truth and knaves always lie.) They made the following statements
to the philosopher:

A: X is a good door.

B: At least one of the doors Y or Z is good.

C: A and B are both knights.

D: X and Y are both good doors.

E: X and Z are both good doors.

F : Either D or E is a knight.

G: If C is a knight, so is F .

H: If G and I8 are knights, so is A.

Smullyan’s problem: Which door should the philosopher choose?

Liu’s problem: The philosopher lacked concentration. All he heard was the first statement (A’s)
and the last statement (H’s) plus two fragments:

C: A and . . . are both knights.

G: If C is a knight,

Prove that he had heard enough to make a decision.
7Crux Mathematicorum
8Here, “I” is H referring to himself.

11

7. An Honest Name: (from FUNCT9 1.2.4) Three golfers named Tom, Dick, and Harry are
walking to the clubhouse. The first man in line says, “The guy in the middle is Harry.” The man
in the middle says, “I’m Dick.” The last man says, “The guy in the middle is Tom.” Tom, the
best golfer of the three, always tells the truth. Dick sometimes tells the truth, while Harry, the
worst golfer, never does. Figure out who is who.

8. Liars and Truth-tellers 3: (adapted from JRM10 392) At Liars Anonymous, there was a
gathering of liars in extreme denial and fully reformed truth-tellers. Each will profess his/her
truthfulness. However, when they are all together, their statements about each other reveal the
truth:

• Amy says, “Hal and Ida are truth-tellers.”

• Bob says, “Amy and Lee are truth-tellers.”

• Cal says, “Bob and Gil are truth-tellers.”

• Dee says, “Eli and Lee are truth-tellers.”

• Eli says, “Cal and Hal are truth-tellers.”

• Fay says, “Dee and Ida are truth-tellers.”

• Gil says, “Eli and Jay are liars.”

• Hal says, “Fay and Kay are liars.”

• Ida says, “Gil and Kay are liars.”

• Jay says, “Amy and Cal are liars.”

• Kay says, “Dee and Fay are liars.”

• Lee says, “Bob and Jay are liars.”

Which are liars and which are truth-tellers?

8 Reasoning about Clue

In this section, we describe the skeleton implementation of Python clueReasoner code which maintains
a knowledge base of Clue game information, and performs deductive reasoning based on SATSolver.
Portions of the implementation which supply clauses to SATSolver are deliberately left unimplemented
as exercises for the reader. When these portions are implemented, the clueReasoner is fully functional
and will allow the user to make expert deductions about the game.

We begin by describing the module level variables of clueReasoner:

caseFile = "cf"
players = ["sc", "mu", "wh", "gr", "pe", "pl"]
extendedPlayers = players + [caseFile]
suspects = ["mu", "pl", "gr", "pe", "sc", "wh"]
weapons = ["kn", "ca", "re", "ro", "pi", "wr"]
rooms = ["ha", "lo", "di", "ki", "ba", "co", "bi", "li", "st"]
cards = suspects + weapons + rooms

9Function Journal
10Journal of Recreational Mathematics

12

caseFile the symbol representing the case file

players a list of symbols representing the players in their turn order

extendedPlayers a list of symbols representing the players with the case file added to it

suspects a list of symbols representing the suspects

weapons a list of symbols representing the weapons

rooms a list of symbols representing the rooms

cards a list of symbols representing all suspects, weapons, and rooms

It is important to note the separate roles of the players and suspects lists. While players do take
on the identities of suspects, the game can be played with 3 to 6 players, thus the players list will
contain a subset of the suspects list. Also, the player list is given in turn order.

The symbols used to represent cards and players are, for the most part, the first two letters of their
names, as shown in the following table:

Col. Mustard mu Knife kn Hall ha
Prof. Plum pl Candlestick ca Lounge lo
Mr. Green gr Revolver re Dining Room di

Mrs. Peacock pe Rope ro Kitchen ki
Miss Scarlet sc Lead Pipe pi Ballroom ba
Mrs. White wh Wrench wr Conservatory co

Billiard Room bi
Case File cf Library li

Study st

The next functions use the indices (position numbers) of these symbols in their respective lists to
compute unique literal integers for SATSolver clauses. We mentioned earlier that each Clue atomic
sentence cp symbolizes the statement “The card c is in place p.”. There is an atomic sentence for
each place and card pair. We assign an integer to each sentence for our DIMACS CNF format as
follows. Suppose we have a place index ip and a card index ic. Then the integer corresponding to cp is
ip × numCards + ic + 1.

For example, consider the atomic sentence piwh. The player Mrs. White (“wh”) has index 2. The
lead pipe card (“pi”) has index 10. There are 21 cards. Therefore, the integer corresponding to the
atomic sentence cp is 2× 21 + 10 + 1 = 53. Each atomic sentence has a unique number from 1 through
(numPlayers + 1)× numCards.

There are two version of the getPairNum functions. The first takes symbols, and the second takes
integer indices.

〈Get the literal integer for the player-card pair〉≡
def getPairNumFromNames(player,card):

return getPairNumFromPositions(extendedPlayers.index(player),
cards.index(card))

def getPairNumFromPositions(player,card):
return player*len(cards) + card + 1

13

Now we come to the portions of the clueReasoner that are the core of the project. Here you must
consider the knowledge to be represented, and construct a list of suitable clauses for the SAT-solver.

In initialClauses, you add general knowledge about the game which is known by all players
before the game starts.

The knowledge you will encode falls into four categories:

1. Each card is in at least one place. That is, each card is in a player’s hand or the case file.
We do not allow the possibility that a card was accidentally left in the box11.

2. If a card is in one place, it cannot be in another place. Since there is only one of each
card, the fact that it is in one place means in cannot be in another place. For each pair of places,
it cannot be in both.

3. At least one card of each category is in the case file. We choose one card at random from
each category to be placed in the case file. For example, at least one of the weapon cards is in
the case file.

4. No two cards in each category are in the case file. Since only one card from each category
is placed in the case file, we cannot, for example, have both the Pipe pi and Wrench wr in the
case file. For each pair of cards within a category, at least one of the two must not be in the case
file.

First, the programmer should seek to represent some of these facts on paper in propositional logic
and convert them to CNF in order to gain a good understanding of what clauses need to be constructed.
Then, the initialClauses function should be coded so that it returns a list of these clauses.

〈Add initial clauses〉≡
TO BE IMPLEMENTED AS AN EXERCISE
def initialClauses():

clauses = []

Each card is in at least one place (including case file).
for c in cards:

clauses.append([getPairNumFromNames(p,c) for p in extendedPlayers])

A card cannot be in two places.

At least one card of each category is in the case file.

No two cards in each category can both be in the case file.

return clauses

11This sadly happens on occasion.

14

At the beginning of the game, the player is dealt a hand (set) of cards. This is private information
the player has about what is not in the case file. Before the beginning of the game, we use the hand
function to note that the given cards are in the possession of that player.

Here the programmer should add the simple clauses representing the known possession of these
cards.

〈Return list of clauses indicating player information〉≡
TO BE IMPLEMENTED AS AN EXERCISE
def hand(player,cards):

return []

15

Earlier, we noted that the turn order of the players list is important. The suggest function is
where this information is used. In the game of Clue, a player may suggest a suspect, a weapon, and a
room, upon entering that room on the board. Since the board movement is irrelevant to the deduction,
we will not detail the circumstances of a suggestion here.

When a suggestion of three cards is made, the player to the left of the suggester (clockwise) checks
their private cards to see if any of the cards are part of the suggestion. If so, the player must refute the
suggestion by privately showing one of these refuting cards to the suggester. If not, the player states
that they cannot refute the suggestion, and attention then turns to the next player clockwise. The
next player does the same, either refuting or not, and this continues clockwise until the first possible
refutation, or until all other players have stated that they cannot refute the suggestion.

Suppose all six players are playing with the following turn order: Scarlet, Mustard, White, Green,
Peacock, Plum. The meaning of the function call suggest("sc", "wh", "pi", "ha", "pe", "ha")
is as follows: suggester Miss Scarlet suggested that Mrs. White committed the murder with the lead
pipe in the hall (parameters card1, card2, and card3). This was refuted by refuter Mrs. Peacock,
who showed Scarlet the hall card (cardShown). Consider that we learn much more than the fact that
Mrs. Peacock has the hall card.

After Scarlet suggested {wh, pi, ha}, all players between Scarlet and the refuter Peacock must have
been unable to refute the suggestion. Thus we also learn that these players, Mustard, White, and
Green, do not have any of these cards. The knowledge we gain from a suggestion is both negative,
which players do not have the suggested cards, and positive, which card a player has.

In many cases, a player does not get to see the card that is shown to refute the suggestion. In
this case, the cardShown parameter is given the value None. Consider the function call suggest("wh",
"mu", "re", "ba", "pe", None). White suggests that Mustard committed the murder with the
revolver in the ballroom. Peacock refutes the suggestion by showing a card privately to White, but
the player (Scarlet) does not get to see this card. In this case we learn that Green does not have these
cards. We also learn that Peacock has at least one of these cards. The information gained is similar
to the previous case. The difference is that at least one of the three suggested cards must be in the
refuter’s hand.

In some cases, there may not be a refuter at all. This is indicated by having the refuter parameter
with the value None. (The cardShown parameter should then also be None.) If no player can refute the
suggestion, we simply gain information that all players except the suggester do not have the suggested
cards. The suggester is never part of the refutation.

Implementing suggest, the programmer must bear all of these cases in mind. Detailed rules to
Clue may be found at the Hasbro website12.

〈Return clauses with suggestion information〉≡
TO BE IMPLEMENTED AS AN EXERCISE
def suggest(suggester,card1,card2,card3,refuter,cardShown):

return []

12See URL http://www.hasbro.com/pl/page.game_and_toy_instructions/letter.C/dn/default.cfm.

16

The winner of clue is the first player to correctly make an accusation (not a suggestion) naming
the three cards in the case file. Each player can make an accusation on any one turn, and checks the
correctness of the declared accusation by privately looking in the case file. An accusation can only
be made once, as the player either wins or loses depending on the correctness of the accusation. (If a
player loses through incorrect accusation, the player continues to refute suggestions by other players,
but may no longer take part in play otherwise.)

Consider the example function call accuse("sc, "pe", "pi", "bi", True). This represents the
fact that the accuser Scarlet accused Mrs. Peacock of committing the murder with the pipe in the
billiard room, and that this accusation is correct (parameter isCorrect is True). From a correct
accusation, we gain knowledge that these three cards (parameters card1, card2, and card3) are in the
case file.

Now consider what happens when the accusation is not correct. Suppose we have the function call
accuse("sc", "pe", "pi", "li", False). Then we learn that at least one of the three cards of the
accusation is not in the case file. In implementing accuse, the programmer must handle both of these
cases.

Note futher that whether the accusation is correct or not, one can deduce that the accuser does not
have in hand any of the cards involved in the accusation. A player might suggest cards that are in
hand in order to throw others off the trail, but a false accuse results in losing the game.

〈Return accusation information〉≡
TO BE IMPLEMENTED AS AN EXERCISE
def accuse(accuser,card1,card2,card3,isCorrect):

return []

The rest of the functions in our skeleton implementation are to aid the programmer in querying
SATSolver and viewing the deductions that can be made at any given point. The query function takes
a player (possibly caseFile) and card and tests that literal, returning SATSolver’s True, False, and
None depending on the results of satisfiability testing.

〈Query whether a literal is true, false, or unknown〉≡
def query(player,card,clauses):

return SATSolver.testLiteral(getPairNumFromNames(player,card),clauses)

These return codes may be converted to simple strings using queryString.

〈Convert a query return code to a string〉≡
def queryString(returnCode):

if returnCode == True:
return ’Y’

elif returnCode == False:
return ’N’

else:
return ’-’

17

These two functions in turn are used in printNotepad to print out a table (or “detective notepad”)
indicating the current state of the propositional knowledge about the locations of cards.

〈Print a table of current deductions〉≡
def printNotepad(clauses):

for player in players:
print ’\t’, player,

print ’\t’, caseFile
for card in cards:

print card,’\t’,
for player in players:

print queryString(query(player,card,clauses)),’\t’,
print queryString(query(caseFile,card,clauses))

Finally, we supply a playClue function with information from an actual Clue game which provides
usage examples and a test of the implementation’s correctness. When initialClauses, hand, suggest,
and accuse are all implemented properly, printNotepad should indicate the correct place of each card
in this particular game both times it runs.

18

〈Test clueReasoner with a sample game〉≡
def playClue():

clauses = initialClauses()
clauses.extend(hand("sc",["wh", "li", "st"]))
clauses.extend(suggest("sc", "sc", "ro", "lo", "mu", "sc"))
clauses.extend(suggest("mu", "pe", "pi", "di", "pe", None))
clauses.extend(suggest("wh", "mu", "re", "ba", "pe", None))
clauses.extend(suggest("gr", "wh", "kn", "ba", "pl", None))
clauses.extend(suggest("pe", "gr", "ca", "di", "wh", None))
clauses.extend(suggest("pl", "wh", "wr", "st", "sc", "wh"))
clauses.extend(suggest("sc", "pl", "ro", "co", "mu", "pl"))
clauses.extend(suggest("mu", "pe", "ro", "ba", "wh", None))
clauses.extend(suggest("wh", "mu", "ca", "st", "gr", None))
clauses.extend(suggest("gr", "pe", "kn", "di", "pe", None))
clauses.extend(suggest("pe", "mu", "pi", "di", "pl", None))
clauses.extend(suggest("pl", "gr", "kn", "co", "wh", None))
clauses.extend(suggest("sc", "pe", "kn", "lo", "mu", "lo"))
clauses.extend(suggest("mu", "pe", "kn", "di", "wh", None))
clauses.extend(suggest("wh", "pe", "wr", "ha", "gr", None))
clauses.extend(suggest("gr", "wh", "pi", "co", "pl", None))
clauses.extend(suggest("pe", "sc", "pi", "ha", "mu", None))
clauses.extend(suggest("pl", "pe", "pi", "ba", None, None))
clauses.extend(suggest("sc", "wh", "pi", "ha", "pe", "ha"))
clauses.extend(suggest("wh", "pe", "pi", "ha", "pe", None))
clauses.extend(suggest("pe", "pe", "pi", "ha", None, None))
clauses.extend(suggest("sc", "gr", "pi", "st", "wh", "gr"))
clauses.extend(suggest("mu", "pe", "pi", "ba", "pl", None))
clauses.extend(suggest("wh", "pe", "pi", "st", "sc", "st"))
clauses.extend(suggest("gr", "wh", "pi", "st", "sc", "wh"))
clauses.extend(suggest("pe", "wh", "pi", "st", "sc", "wh"))
clauses.extend(suggest("pl", "pe", "pi", "ki", "gr", None))
print ’Before accusation: should show a single solution.’
printNotepad(clauses)
print
clauses.extend(accuse("sc", "pe", "pi", "bi", True))
print ’After accusation: if consistent, output should remain unchanged.’
printNotepad(clauses)

19

9 Improving Performance

In this section, we first discuss simple means for improving reasoning performance by changing the
knowledge base. We then describe three different means of adding to the knowledge base: deductive
learning, inductive learning, and knowledge acquisition.

9.1 Deleting Clauses

Until now, we have made no effort (programmatically or on paper) to delete unnecessary clauses
from the knowledge base. Reasoning engines often have a preprocessing stage that streamlines the
knowledge base for greater reasoning efficiency. Here, we describe three simple types of unnecessary
clauses: equivalent clauses, subsumed clauses, and tautology clauses13.

Recall our knowledge base from the liar/truth-teller example problem:

(1) {¬A,¬B} Knowledge base
(2) {B, A}
(3) {¬B,¬C}
(4) {C, B}
(5) {¬C,¬A}
(6) {¬C,¬B}
(7) {A, B, C}

Did you notice that clauses (3) and (6) are logically equivalent? Each clause represents a disjunction
(“or”) of the literals, and by the commutative law for disjunction (e.g. A ∨ B ≡ B ∨ A), the ordering
of literals within a clause is irrelevant. If one knows “It will rain or snow,” this is the same as knowing
“It will snow or rain.” Thus, clause (6) adds nothing to the knowledge of clause (3), and can be safely
deleted from the knowledge base. Indeed, any time that resolution would produce a clause which is a
permutation of literals in a previous clause, we should not add it to the knowledge base. These are
equivalent clauses.

Did you also notice that clause (2) entails clause (7)? Every model of B ∨ A is also a model of
B ∨ A ∨ Adding disjuncts to a clause has the effect of increasing the number of models for the
clause. If one knows “It will rain or snow,” this is stronger, more specific knowledge than “It will rain,
snow, or shine.” If one knows the former, one knows the latter. However, if one knows the latter, one
does not know the former. We say that clause (7) is subsumed by clause (2). Clause c1 subsumes clause
c2 if the literals of c1 are a subset of the literals of c2. A subsumed clause can be deleted from the
knowledge base without loss of knowledge. Further, when resolution would produce a clause which is
subsumed by a previous clause, we should not add it to the knowledge base.

Finally, we note that tautologies should be deleted from the knowledge base. As we noted before,
the clause {A,¬A}, or any clause with both positive and negative literals for the same atomic sentence,
is always true for all truth assignments, and adds nothing to our knowledge. Knowing “It will rain or
it won’t rain,” is useless. We can safely delete all tautology clauses from the knowledge bases.

9.2 Adding Clauses

People often urge each other not to “reinvent the wheel”, to perform work that has already been
done. This is the principle behind dynamic programming algorithms. (See Solving the Dice Game
Pig: an introduction to dynamic programming and value iteration14.) In computation, there are often

13The interested reader can also investigate the use of “pure clause elimination” (a.k.a. the “pure symbol heuristic”
[?, §7.6]).

14See URL http://cs.gettysburg.edu/%7Etneller/nsf/pig/index.html.

20

important tradeoffs between computational time and memory. Dynamic programming stores results of
computations to speed future computations dependent on such results.

In the context of automated reasoning, one can store new knowledge produced through reasoning
in order to potentially speed future reasoning that depends on such knowledge. Let us consider our
previous liar/truth-teller example with unnecessary clauses eliminated. Suppose we perform resolution
to prove that Amy is a liar:

(1) {¬A,¬B} Knowledge base
(2) {B, A}
(3) {¬B,¬C}
(4) {C, B}
(5) {¬C,¬A}
(6) {A} Assumed negation
(7) {¬B} (1),(6) Derived clauses
(8) {C} (4),(7)

(11) {¬A} (5),(8)
(9) {} (6),(11) Contradiction!

From this proof by contradiction we now know {¬A}, and can add it to our knowledge base. Why
might we want to do this? First, this would allow us to eliminate all subsumed clauses containing ¬A,
resulting in a more compact knowledge base with equivalent knowledge and fewer possible resolutions.
This in turn is appealing, as a proof is essentially a search through a maze of possible resolutions to a
contradiction, and such compaction can simplify search.

Consider what happens when we add {¬A}, delete subsumed clauses eliminate subsumed clauses
{¬A,¬B} and {¬C,¬A}, and prove that Bob is a truth-teller:

(1) {B, A} Knowledge base
(2) {¬B,¬C}
(3) {C, B}
(4) {¬A}
(5) {¬B} Assumed negation
(6) {A} (1),(5) Derived clauses
(7) {} (4),(6) Contradiction!

In the previous proof that Amy was a liar, there were eight possible clause pairings for the first
resolution. Of these, two derive tautologies ((1,2) and (3,4)), and two derive desirable unit clauses15

((1,6) and (5,6)). In this proof that Bob is a truth-teller, there are now only five possible pairings
for the first resolution. Of these, only one derives a tautology ((2,3)), and three derive desirable unit
clauses ((1,4), (1,5), and (3,5)). There are various algorithmic strategies in searching for a resolution
proof. However, even a randomized strategy will find a contradiction more easily with this compacted
knowledge base.

With the new knowledge that Bob is a truth-teller, we can again remove subsumed clauses {B, A}
and {C, B}, and prove that Cal is a liar:

(1) {¬B,¬C} Knowledge base
(2) {¬A}
(3) {B}
(4) {C} Assumed negation
(5) {¬B} (1),(4) Derived clauses
(6) {} (3),(5) Contradiction!

15A unit clause is a clause of one literal.

21

This time, there were only two possible pairings for the first resolution ((1,3) and (1,4)), and both
derive unit clauses. New knowledge that Cal is a liar subsumes clause (1), so our knowledge base is
now:

(1) {¬A} Knowledge base
(2) {B}
(3) {¬C}

It is interesting to note that this knowledge base, the answer to the example exercise, subsumes all
knowledge of the exercise. The exercise solution is the simplest expression of the exercise knowledge.

Should one always add the knowledge obtained through proof by contradiction? Will this always
benefit us? No. One can prove tautologies (e.g. A ∨ ¬A) or subsumed facts (e.g. ¬A ∨ B ∨ ¬C), and
the addition of these to our knowledge base has no benefit.

Furthermore, consider that the number of possible (non-tautology) clauses of length l for a atomic
sentences is 2l

(
a
l

)
:

a l = 1 l = 2 l = 3 l = 4 l = 5
1 2 0 0 0 0
2 4 4 0 0 0
3 6 12 8 0 0
4 8 24 32 16 0
5 10 40 80 80 32
10 20 180 960 3360 8064
20 40 760 9120 77520 496128
40 80 3120 79040 1462240 21056256
80 160 12640 657260 25305280 769280512

There are two important things to observe in this table. Not surprisingly, the first is that there are
too many possible clauses to store for long clauses with large numbers of atomic sentences. Although
subsumption may make the storage of a large fraction of these unnecessary, still one can easily store
enough long-clause knowledge to be detrimental to learning. It is counterproductive if one adds many
proven long clauses only to increase the complexity of the “maze” of possible paths to a resolution
proof, slowing future proof searches.

The other important observation is that unit clauses are rare and precious. If one can prove them,
add them, for there will be at most 2a such clauses. These have the greatest power to subsume other
clauses, and have the greatest potential to benefit future resolution theorem proving.

As a general rule of thumb, prefer to add shorter clauses to your knowledge base that are relevant
to your expected query distribution.

9.3 Deduction, Induction, and Acquisition

In his book Machine Learning [?], Tom Mitchell writes “A computer is said to learn from experience
E with respect to some class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E.” In the context of our Clue project, what are T , P ,
and E? There are many possible choices, but we will examine one choice, and consider different ways
that a reasoning program could “learn”.

In the previous section, we saw that adding proven facts to the knowledge base can benefit future
proof computation. This suggests that our task T is the task of reasoning, answering a query to the
knowledge base. One natural performance measure P might be the expected average computational
time over a given distribution of queries (e.g. single literal queries). What then is the experience E?
In this case, E is the experience of deducing new knowledge and adding it to the knowledge base. This
type of machine learning is called deductive learning.

22

There is a very different type of learning called inductive learning, or learning by example. Uncertain
general knowledge of the world is induced from specific knowledge. Let us momentarily suppose that
the rules of the game are not supplied to the reasoning system. Even the simple fact that each card is
unique and is in exactly one location is not known. At the end of the game, one usually has seen or can
deduce the locations of many cards, yet the locations of some may remain forever unknown. However,
inductive learning might be used to take a substantial amount of observed or deduced card position
data, and generalize the fact that a card is in exactly one location.

As a trivial explanatory example, suppose one has two upside down cups which may or may not
have a ball underneath. For each trial, the cups are set up unobserved by another. Then one flips two
coins, one for each cup. For each head flipped, one lifts and looks under the corresponding cup. For
one-quarter of trials, nothing is observed. For one-half of trials, one looks underneath one cup. For the
remaining one-quarter of trials, one looks underneath both cups.

Now suppose that when both cups are lifted, you always see exactly one ball under one cup or the
other. Further suppose that when a single cup is lifted, you observe a single ball some of the time. Over
time, such observations would give you greater and greater confidence that, regardless of coin tossed,
there is exactly one ball underneath the cups each time.

Let atomic sentences B1 and B2 denote that there is a ball underneath cup 1 and cup 2 respectively.
After a number of observations, one might induce the (uncertain) knowledge B1 ⇔ ¬B2. With more
observations, this induced knowledge becomes more certain, but it can never be completely certain.
For example, the person setting up the cups may be following a rule that exactly one ball will be placed
under a random cup until the ball supply runs out (using a new ball each time), except when the
Boston Red Sox win the World Series in the fourth game during a total lunar eclipse, in which case a
second ball is added to celebrate.

Specific knowledge may be deduced from general knowledge. General knowledge may be induced
from specific knowledge. Thus it is often said that induction is the inverse of deduction, just as
machine vision is the inverse of computer graphics rendering. Algorithms for inductive learning of
logical knowledge are beyond the scope of this project. However, the interested reader can pursue this
topic further through by investigating the field of inductive logic programming (ILP). We recommend
a survey article by Page and Srinivasan [?], chapter 19 of [?], and chapter 10 of [?].

Finally, we note that there are times when knowledge is much more easily supplied than deduced
or induced. Consider again the Clue knowledge that a card is in exactly one location. We supply this
knowledge to our system as part of the initial knowledge base. This is considerably easier than inducing
the same knowledge through repeated observation. However, many have observed that the difficult
part of logical reasoning is not the reasoning itself but the acquisition of the knowledge. Knowledge
acquisition is often a significant engineering challenge of knowledge-based systems, and this challenge
is often referred to as the knowledge acquisition bottleneck.

The preceding project often illustrates how difficult it can be for one who is an “expert” on Clue
rules to completely and correctly encode all fundamental knowledge of the game. Imagine building the
same system without a guide as to what knowledge should be added to the knowledge base.

Returning to Mitchell’s definition, we see that the three “experiences” of deduction, induction, and
knowledge acquisition can add knowledge to the knowledge base, thus potentially improving (or even
making possible) the performance of the task of answering queries to the knowledge base.

10 Advanced Projects

In addition to this small project, there are several directions a student may take to go more in depth.
These advanced projects are independent of one another, although the first may be combined with
either of the latter two.

23

10.1 Counting Cards

One set of facts that we have omitted from the knowledge base concern the number of cards in a player’s
hand. In a game of Clue, players know the number of cards held by other players. In a six player game,
each player holds three cards. In a three player game, each player holds six cards. In four and five
player games, players hold differing numbers of cards, depending on position in the turn order.

Such constraints can be expressed verbally as “Player p has n cards.” In our representation of facts,
this equivalent to “Exactly n of cp is true for all cards c.” This, in turn, is equivalent to saying “At
least n of cp is true, and at least (21 − n) of ¬cp is true.” Sentences which place such “at least”, “at
most”, and “exactly” constraints on a number of literals being true are often called pseudo-boolean
constraints.

The goal of this advanced project is to augment our clueReasoner to make use of these cardinality
constraints in some reasonably efficient manner. It is permissible to trade off completeness for efficiency,
so long as one can demonstrate cases where the reasoning engine makes use of this knowledge.

There are a number of approaches one can take. Perhaps the simplest is to allow such reasoning
outside of the SATSolver. In other words, one can look at the inferences of the SATSolver, and check
if our cardinality constraints can yield further inferences. If so, we add clauses that represent such
inferences to the SATSolver, and repeat the process.

Another approach requires knowledge of digital logic, specifically, how to design an adder circuit.
If one views a set of literals as single bit numbers (0 = false, 1 = true), then cardinality constraints
express that we wish the sum of these single-bit numbers to be in a certain range. In the case of an
“exactly” form of constraint, we know the desired sum. While encoding a circuit that tests for a certain
sum propositionally is a compact way to express such information, the impact of such a representation
on the efficiency of reasoning is an open research question.

Perhaps the most promising approach is to work directly with the pseudo-boolean constraints with
an algorithm such as the WalkSAT generalization WSAT(PB) [?]. A survey of such algorithms can
be found in chapter 6 of [?]. These algorithms can work with constraints of the form “At least n of
this set of literals is true.” All propositional facts of Clue can be put concisely into this form. Our
facts in CNF form can be thought of as a specific case of this where n = 1 for each clause. One can
thus generalize DPLL and stochastic local search algorithms by adding an additional number for each
generalized clause that indicates how many literals must be true for the clause to be satisfied.

This is an area rich with possibilities for creativity and research challenges.

10.2 DPLL Implementation

The preceding project largely focused on the task of knowledge representation. We relied on an imple-
mented SATSolver to perform propositional reasoning for us. It would be satisfying to complete both
the knowledge representation and the reasoning components.

One way to do this is to extend the SATSolver implementation, overriding (replacing) the makeQuery
method with a rudimentary implementation of DPLL as described in [?, ?, ?].

There are many possible optimizations. While none are strictly necessary, one may learn much
about such implementations by choose one optimization, reading the literature on it, implementing it,
and comparing performance with and without the optimization. For example, consider the “watched
literal” optimization used to speed unit resolution [?].

10.3 Stochastic Local Search Implementation

Another possible solver to implement is based on stochastic local search [?]. Even inefficient implemen-
tations of the WalkSAT algorithm happen to perform very well for Clue reasoning. Descriptions of
WalkSAT can be found in [?, ?, ?, ?].

24

What is important to note is that we cannot perform proof by contradiction with stochastic local
search. If we fail to find a satisfying truth assignment for a knowledge base and negated hypothesis, it
may be the case that the search was simply unsuccessful. The fact that a search is stochastic does not
mean that the search is also complete. This incompleteness of many stochastic local searches means
that our proof procedure is unsound if we treat an unsuccessful incomplete stochastic local search as
we do a contradiction.

Nonetheless, the performance of such an approach is quite impressive. For this problem, an unop-
timized Java implementation of WalkSAT takes less time to run with high reliability than zChaff plus
the overhead of the Java interaction with zChaff.

If desired, a simple implementation of WalkSAT can then be improved by examining high-performance
implementations such as given in UBCSAT16.

Further, one can examine further literature on WalkSAT improvements such as Novelty, Novelty+,
and Adaptive Novelty+, the random category winner of the http://satlive.org/SATCompetition/2004/SAT
2004 competition for the SAT and ALL (SAT + UNSAT) benchmarks.

A high quality implementation of a stochastic local search SAT solver is a worthy and satisfying17

advanced project.

16See URL http://www.satlib.org/ubcsat/.
17no pun intended

25

