
Life in the Age of Networks · September 17, 2007 · D. Liben-Nowell · 1

1 Graph representations
One exception to the “only small networks can
be fruitfully displayed visually” claim is a class
of networks called planar graphs. A graph is
called planar if it’s possible to draw it on a sheet
of paper in such a way that no edges cross each
other on the page. For example, the graph

has some crossing edges, but if you rearrange
the layout of the nodes as follows

then there are no edge crossings. (These images
are from http://www.math.gatech.edu/
∼trotter/Section3-planar.htm .) The most
famous type of planar graph is the type derived
from maps: think of the countries on a map as
nodes and draw an edge between two
countries/nodes if those two countries share a
border. (There’s a minor caveat that I’ll
informally call the “Alaska problem”: in order
for the resulting graph to be guaranteed to be
planar, a country must be a contiguous area.)
Determining how to lay out a planar graph
without edge crossings can be an interesting
amusement—see www.planarity.net .

We’ve already seen a number of networks—both large
and small—represented visually. A visual representation
is terrific for smaller networks, and a well-designed layout
can make a small network easy to understand at a glance.
There is, in fact, an entire subfield of computer science
called graph drawing, which is devoted to taking networks
and producing good (clear, aesthetic, ...) images of the
networks. But for almost all types of networks, once the
number of nodes gets past a hundred or so, the pictures
become so cluttered that it’s almost impossible to get
much useful information about of the image. (So a node
is worth about ten words, I suppose: a thousand words
per picture; a hundred nodes per picture.) For larger
networks—e.g., Facebook or the web—we’ll need another
representation. And, for that matter, when we’re
thinking about representing data on a computer, an
image is not a feasible way to store a network.

To represent a large network on a computer, we need to
find a way to store both the nodes of the graph and the
edges of the graph. Depending on the graph, we may also
need to store additional information about the nodes
(name, salary, political views, ...) or the edges (number of
lanes, length of flight, whether the two connected nodes
went to school together or hooked up or don’t even know
each other, ...). In computer science, the topic of how to
organize and store information is called data structures

(and there are typically entire courses taken relatively
early in CS curricula devoted to the topic). We’ll leave
most of data structures to CS 201 (which naturally you
should plan to take in the spring, naturally after you take
CS 111 in the winter), but in this course we’re going to
have to confront the particular issue of how to store a
graph in a computer.

The most straightforward way to store a network on a
computer is by literally storing a list of nodes and a list
of edges. This is a reasonable beginning, but it conflicts A miniature graph to consider as an example:

n
o
d
e
s

Alice

Charlie

Eve

Bob

Danielle

e
d
g
e
s Alice, Eve

Bob, Alice

Eve, Bob

with the computer scientist’s natural Lamborghini-like
inclinations. You’ll notice that many of the natural
questions that you might typically ask about a network
(or even that you can very easily read off of a picture of a
network) are difficult to answer quickly in when a
network is stored this way. (E.g., what are all of the
neighbors of Alice? Are Eve and Charlie friends?)
Imagine that I gave you a file of this form containing all
of the nodes and edges of Facebook, and then I asked you
to tell me whether your sister is a friend of my cousin.



Life in the Age of Networks · September 17, 2007 · D. Liben-Nowell · 2

What would you do? Sadly, answering this question
would require you to go through every edge in the graph
in the above representation—and that seems silly. There
are tens of millions of nodes and billions of edges in
Facebook, and if clicking on “all friends” in Facebook
required Mark Zuckerberg to read through billions of
lines of data, you sure wouldn’t have time to login as
many times per day as you (on average) do.

There are two representations of graphs that are standard
ways to store networks on a computer that let us do
things faster. Each of them is tailored to make it possible
to answer one or the other of the above types of questions
(What are all of u’s neighbors? Is there an edge between
u and v?) extremely quickly:

1. Adjacency list. For each node u in the network, we An adjacency list for our miniature graph:
Alice: Eve, Bob

Bob: Alice, Eve

Charlie: ---

Danielle: ---

Eve: Alice, Bob

store a list of all of u’s neighbors in the network.
(To make it easier to find a particular node, we also
store the nodes in sorted order.) Obviously this
representation is perfectly tailored to answering the
“what are all of u’s neighbors?” question, because
we’ve simply stored that information for each node
in the graph. To answer the “is there an edge
between u and v?” question, we need to look
through the list stored at node u and check to see if
v is in that list. Thus we have to look at a list of
length degree(u) to answer this question—and
degree(u) is typically very small (even compared to
the number of nodes in the graph, let alone the
number of edges in the graph).

2. Adjacency matrix. We store the graph using an An adjacency matrix for our miniature graph:
Alice Bob Charlie Danielle Eve

Alice no yes no no yes

Bob yes no no no yes

Charlie no no no no no

Danielle no no no no no

Eve yes yes no no no

n-by-n table (where n is the number of nodes in the
graph), where row #u (in alphabetical order)
corresponds to the neighbors of node u. A yes in
column v indicates that an edge exists between the
two nodes u and v; a no indicates that it does not.

Actually, since computers actually store all of their
information using bits (data values that are either Or, more realistically:

2

6

6

6

4

0 1 0 0 1

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

3

7

7

7

5

You may recognize this representation as a
matrix from your high-school algebra class, and
that’s why the name is used.

zero or one), we would instead store a table of
zeroes and ones that represent whether an edge
exists between node #i and node #j (stored as a 1)
or does not exist (stored as a 0) between the ith
node and the jth node.

This representation is perfect for answering the
question of whether there is an edge between two
particular nodes: just look at the appropriate spot
in the table. Finding all of the neighbors of a



Life in the Age of Networks · September 17, 2007 · D. Liben-Nowell · 3

particular node requires looking at one entire row of
the table. It turns out that there are some
interesting questions about graphs that can be
answered using this matrix representation, and we
may return to this soon. (In the meantime, try to
remind yourself of how matrix multiplication
works—look at Wikipedia if you want a refresher.)

2 Connectivity in Graphs

One of the most basic questions that one can ask about a
network—and one that seems agonizingly simple when
you look at a picture of a small network—is whether
there is a path connecting some node s to some node t.
Can you get from Missoula to Madison by car? Is there
some chain of friends that connects me to Phil Collins? If
the coconut tree goes extinct, will the African swallow be
affected? (I.e., does the African swallow eat something
that eats something that eats something ... that eats
coconuts?) Or, even more simply, is a given network
connected? (I.e., are all pairs of nodes in this network
connected by some path?) These questions are pretty
simple to answer for small networks presented
visually—just look!—but it’s much trickier to figure out
how you might answer these questions for a network
stored as an adjacency list or adjacency matrix. Here’s a network in adjacency-list form:

0: 3, 7

1: 9, 2, 5

2: 1, 10

3: 0, 7, 1

4: 10, 7

5: 1

6: 7, 11

7: 0, 4, 6

8: 11, 12

9: 1

10: 2, 4

11: 6, 8

12: 8

Is there a path from node 0 to node 12?

Before we launch into a full-blooded explanation of how
to solve this problem, it’s worth pondering how you
might solve this problem, say with a social network
represented via adjacency list. Imagine that I ask you
whether there’s a way to get from you to me in a large
social network. You can get an answer to the question
“who are u’s friends?” by asking u for a list of his or her
neighbors. This description is analogous to a network
stored by adjacency list: you have access to lists of
neighbors for any node in the network. And you want to
know if a path exists between two specified nodes in the
network. What would you do? Think about the example
on the right before you read on!

I think that there are a number of different approaches
that you might consider. You might try wandering
aimlessly through the network (pick one of your friends,
see if it’s me, pick one of their friends, see if it’s me,
...)—and, in fact, there’s a whole field of study devoted to
random walks which have exactly this style of exploration.
(We’ll come back to random walks later in the term: it
turns out that the way that Google figures out which



Life in the Age of Networks · September 17, 2007 · D. Liben-Nowell · 4

pages to display in response to a web search has a lot to
do with a slightly more complicated random walk.)

But let’s try to do something more systematic. Let’s say
that you want to figure out whether there’s a path that
connects node s to node t in the network. Here’s the idea.
Let’s keep a list L that represents all of the nodes that we
can reach from a node s in the network. To start with,
the list L will contain just one node—namely the node s

itself. Now we’ll figure out what other nodes are directly
connected to nodes in the list L, and add those nodes to
the list L. After all, if you can reach a node from s, then
you can also reach all of that node’s neighbors from s The description of the algorithm on the left is

written in what’s called pseudocode. It’s a
systematic description of the steps of the
algorithm, but it’s written in English, not in
some programming language that could be
directly interpreted by a computer. The key
idea in writing an algorithm is to communicate
with humans. In this class we’ll be thinking at
this algorithmic level; in other classes (e.g., CS
111, which you’ll take in the winter), you’ll learn
how to translate these descriptions into
something that can be understood directly by a
computer. For your edification, here’s what this
algorithm might look like in Python, the
programming language used in CS 111:

L = [s]

oldL = []

while not L == oldL:

oldL = L

Lprime = []

for u in L:

Lprime = Lprime + neighbors[u]

for v in Lprime:

if v not in L:

L = L + [v]

if t in L:

print "there is a path from s to t"

else:

print "there is no path from s to t"

This code is a very direct translation of the
pseudocode on the left, with one addition: in
order to figure out whether we made any
changes to L when we went through Step 2, this
code “remembers” what L looked like before we
went through Step 2 this time around, and if
the ‘before’ and ‘after’ lists are the same, then it
stops repeating Step 2.

(via that node). But now we’ve found some more nodes
that can be reached from s, which means that we can
also reach any nodes that are directly connected to them

from s. So we’ll repeat that process with the updated list
L: we’ll figure out what other nodes are directly
connected to nodes in the expanded list L, and expand L

again to include all of those nodes too. And we’ll do it
again, and again, and again. Once we’ve figured out all

of the other nodes that we can reach from s, we’ll check
whether t is one of the nodes that we can reach.

Let’s make this a little more concrete:

To determine whether there is a path from s to t:

1. Let L be a list containing only the node s.

2. For every node u in the list L, look at the list of
neighbors of u in the network. Make a new list
L′ that contains every node that is a neighbor of
any node u in L. Now add to L every node in L′

that’s not already in L. Unless we didn’t make
any changes to list L, repeat Step 2 again.

3. If t is in the list L, then the answer is yes—there
is a path from s to t. If t is not in L, then the
answer is no—there is no path from s to t.

The above is an example of an algorithm—a step-by-step
recipe for solving a problem. The key point is that this is
a completely general recipe: for any network and nodes s

and t, you can use this recipe to figure out whether
there’s a path from s to t. (Similarly, you can use the
change-making algorithm that we talked about in the
first week of the term to make change for any desired
amount of money.)

This algorithm is known as breadth-first search (or, for
short, BFS ), for reasons that ought to be somewhat
intuitive. If you imagine a picture of the network, and



Life in the Age of Networks · September 17, 2007 · D. Liben-Nowell · 5

you watch the nodes that are in the list L, you can think
of an ever-expanding frontier around s. The first time
through Step 2, the list L contains all neighbors of s. The
second time through, it contains all neighbors of s and all
neighbors of neighbors of s. The third time through, it
contains all neighbors of s and all neighbors of neighbors
of s and all neighbors of neighbors of neighbors of s. And
so forth. Every step of this process takes the full breadth
of the frontier and expands it out by one more “layer” in
the network. You can think about BFS using the same
analogy by which I was introduced to the Renaissance in
my World Cultures class in tenth grade: think of
throwing a pebble onto the graph at the node s, and
watching the ripples expanding out from s. (According to
Doc Wilkerson, anyway, in the Renaissance s = Florence.)

http://love2all.org/WaterMenu.htm
It’s pretty obvious that if BFS finds a path from s to t,
then a path from s to t exists (after all, BFS found one).
If you think it through a bit more, you should be able to
convince yourself that if BFS doesn’t find a path from s

to t, then s and t are not connected. (By the time BFS
has stopped finding new nodes, it must have collected
every node in s’s connected component in the list L.) We
won’t try to go through a detailed proof of this (we’ll
leave that for CS 202, which you’ll take next fall), but it
should be believable: the algorithm only stopped when
Manifest Destiny was achieved—in other words, when
there were no new nodes that were reachable from any of
the nodes that had already been discovered.


