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INTRODUCTION

Our project involves an in-depth investigation of the Burrows-Wheeler Transform

(BWT), its associated structures and optimizations, its practical application to short-read

sequence alignment, and the resultant ethical debates in genomics. In addition to this paper, we

produced our implementation of a BWT-based short-read aligner, built in C, which is accessible

through our GitHub repository. This paper presents our findings surrounding the BWT and its

algorithmic function, inclusion, and application in short-read aligners. Next, we will discuss the

BWT’s inclusion in genomics and document our methodology in developing a BWT-based

short-read-aligner. Lastly, we put forward a review of the ethical issues in genomics unearthed by

the BWT and provide our own outlook and project conclusion.

ALGORITHMS

A. BWT

The base Burrows-Wheeler Transform (BWT) is a cyclical string-transformation

algorithm. Originally intended to ease the process of compressing significant texts, the BWT

outputs transformed versions of inputs containing long sequences (or ‘runs’) of similar

characters. When encoding, a sentinel (or terminating) character is first added to the end of the

string. The character ‘$’ is commonly used because computers interpret it alphabetically earlier

than other letters and because of its comparative rarity in texts. We then take our input string and

rotate it to the right by one character n times (where n is the number of characters in the input),

generating all cyclical permutations of the string. After generation, we lexicographically sort all

our permutations, taking advantage of the ‘$’ character’s alphabetical priority. Lastly, we record
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the final column of our lexicographically ordered and permuted strings, obtaining our encoded

input (Fig. 1).

Figure 1. Grid of all rotated string permutations, rows unsorted (left); grid of all permutations sorted lexicographically (right).

One of the advantages of BWT encoding is its reversibility. There are two ways to decode

a transformed string. The first is the reconstruction of the encoding grid, as displayed in Fig. 1,

column by column from the last to the first. We fill the last column with the transformed string,

and the rows are re-sorted into lexicographical order. Then, the second to last column is filled in

with the transformed string, and the rows are sorted again. This continues until the table has been

filled. At this point, sort the rows one final time. To identify the original string, you return the

row ending in ‘$’ (Fig. 2).
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Figure 2. The process of reconstruction of the grid, adding the BWT string column by column and re-sorting rows after each

addition. The reconstructed string is shown in green, with the terminator character now at the beginning of the string rather than

the end.

The second method of decoding a BWT codeword is using the string's FM Index. Since

we sort the string lexicographically, the transformed string can produce two strings immediately

with no additional sorting or calculation: the codeword and a string with the character's

characters sorted into lexicographical order; the last and first columns of the rightmost grid in

Fig. 1. With the FM Index of each character (discussed in the following section), we can tie the

unique instance of each character from one column to the other. Starting with the sentinel

character, we reconstruct the original string by jumping from the last to the first column (Fig. 3).

Figure 3. The transform grid with only the first and last column information (left); the first and last column characters indexed for

tracing (right); the character indexed reconstructed string, backwards and forwards (middle).
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The BWT is not a compression algorithm in and of itself but rather a

compression-preparation tool. As mentioned earlier, the BWT’s outputs tend to have long runs of

characters, which means they lend themselves well to compression using Run-Length Encoding

(RLE) (Golomb et al., 1966). RLE is a compression method in which a string’s repeated

characters are combined into a single instance of the character, followed by the number of

subsequent duplicates (e.g., ‘AAACCTGGG’ would become ‘A3C2T1G3’).

RLE does not save significant space when a string is short or the characters are

randomized; however, when used on larger quantities of data, the combination of BWT and RLE

significantly reduces the required memory to store a text. The compressibility of a string

transformed via BWT can be determined by the number and length of contiguous character

sequences it contains. Each contiguous character in a sequence past the second is an additional

character compressed by RLE. An excellent example of a practical application of the BWT is on

DNA sequences.

The number of characters required to store the information of nucleotide sequences is

relatively small, consisting of A, C, T, and G and a single instance of the sentinel character. Due

to this, the possible number of character subsequences is also significantly less than a typical

alphabet; a given subsequence will generally recur far more frequently. This makes the BWT

exceptional for compressing and storing DNA sequences and constructing their FM Index, the

data structure upon which modern sequence alignment is built.

B. FM Index

The Ferragina-Manzini (FM) Index, or Full-text in Minute Index, is a data structure

originally developed to efficiently store and produce the suffix array of a string (Ferragina &
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Manzini, 2002). The FM Index construction relies heavily on the BWT of a string. A traditional

suffix array is a list of all possible suffixes of a string that's overlaid on the tables of the BWT

(Fig. 4).

Figure 4. The suffix arrays as represented by the BWT, in length order (left) and lexicographical order (right).

Traditionally, complete suffix arrays take a substantial amount of memory to store and are

inefficient to query. The FM Index (Fig. 5) takes advantage of the BWT’s last-first-order

property to address these shortcomings. An FM Index is made from the first and last columns of

the ordered BWT of an input string (the rightmost table in Fig. 4) in addition to an attached

character tally matrix and two smaller arrays: one of total count by character and the other of

first column index offset—or, index of first appearance—by character.
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Figure 5. The FM Index data structure of the word “BANANA$”. ‘idx’ = “index”, ‘og’ = “original string index.”

In addition to being fast to query, the FM Index can be searched character-by-character

for matches with an unprocessed substring (Fig. 6). The alignment of a substring to the

pre-processed string via the FM Index progresses “backward” for the original string:

Figure 6. An example search of the FM Index of the string “BANANA$” for the substring “ANA.”

Returns two hits, at indices 1 and 3 of the original string.

Note that this navigation, unaugmented, will find only exact matches between the string

and substring. If there are no matches to the next character within the specified range (See Fig.

6), this algorithm will interpret a lack of matches as a failure. This is undoubtedly useful in some

applications but is detrimental in DNA sequencing, where the vast majority of valuable

alignments will be inexact. As a result, any contemporary aligner that employs the FM Index will

employ an augmented search algorithm that allows for inexact matching, often via scoring, such
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as the nucleotide-substitution-tolerant backtracking algorithm employed by the BWT-based

alignment tool Bowtie (Langmead et al., 2009).

C. Smith-Waterman and Gapped Alignment

While alignment via an FM Index is incredibly efficient, allowing a template string to be

searched from multiple locations and returning all matching indices, it has the disadvantage of no

gap tolerance. That is to say, it will find only exact matches without backtracking and only

matches of the same periodicity with backtracking. This means that, in biological terms, it is

tolerant of only one of three possible DNA replication errors: substitution, when a nucleotide

swaps out for another. Even backtracking gives preference to results that begin well-matched

even if they end poorly matched, as the algorithm only begins to backtrack when it finds a dead

end.

The two remaining DNA replication errors, deletion and insertion (when a subsequence

of any size is either deleted or inserted), are handled well by dynamic programming matrix

scoring like the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970) and its variation of

the Smith-Waterman algorithm (Smith & Waterman, 1981). These algorithms function by

creating a matrix of dimensions equal to the template length and the query length and scoring

every possible alignment between every possible pair of characters, leaving the algorithm with

an order of O(n2). Neeldeman-Wunsch allows for negative matrix cell values and is used for

global alignment (determining the similarity of two sequences of comparable length). In contrast,

Smith-Waterman only allows for cell values zero or greater and is used for local alignment

(where a subsequence fits in a more extended sequence).
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The score for an alignment is calculated from the top left of the matrix. Scores increase or

decrease on diagonals according to a scoring matrix, which is a guide as to the character match

bonus and penalties for each possible character mismatch (Fig. 7).

Figure 7. The SW matrix for the alignment of ‘ANA’ to ‘BANANA.’ The scoring matrix (left), the alignment matrix (middle),

and the possible alignments (right).

The algorithm chooses the highest-scoring cell of the alignment matrix to find the best

alignment once all have been computed. It traces the alignment backward, taking the path of the

highest-scoring connected cells. Progression is preferentially diagonal up-left, as a perfect match

would be an uninterrupted up-left diagonal path. When a mismatch occurs, a path progressing

directly up or to the left signifies a gapped alignment (Fig. 8).

Figure 8. The SW alignment of ‘AAN’ to ‘BANANA.’ Hypothetical result paths are highlighted with orange arrows. Due to

diagonal traversal preference, the path and result on the right are disincentivized.
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Gaps also factor into scoring, and there are several approaches to alignment gap

penalties. The calculation of a gap penalty can define which alignment an implementation

considers more favorable (Fig. 9). The Constant gap penalty will penalize a constant amount for

each gap that occurs (how many times in an alignment you must jump, regardless of distance); a

Linear gap penalty will penalize an alignment proportionally to the length of the gap (how many

columns or rows an alignment has to jump); the Affine gap penalty is a combination of the two,

each gap incurring a flat opening penalty and scaling linearly as the length of the gap increases.

Thus, longer gaps incur a more significant penalty but a lower penalty in proportion to their

length than shorter gaps.

Figure 9. Two hypothetical alignments of the same substring (left) and gap penalty calculations that favor each (right).

Given the scoring criteria selected, this approach is guaranteed to find the best possible

local alignment; however, it requires a significant amount of time and memory. An area of

improvement noted and expanded upon by Lam et al. was that this algorithm, while thorough,

will perform the calculations fresh for all identical substrings in the reference string (Lam et al.,

2008). For example, in Fig. 7, while two locations of the identical score are found (Fig. 10), the

algorithm would have calculated both from scratch. It could have halved its time if it had applied

what it had done the first time to the new identical substring.
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Figure 10. The redundant matrix calculations are outlined.

This is where the BWT and the FM Index once again prove helpful. Due to the FM

Index’s functionality, it is possible to pinpoint identical substrings of the reference string and

avoid computing score calculations for similarity fresh again. The improvements, like the BWT’s

use in RLE compression, are only substantial on much longer strings when the time saved offsets

the overhead—but when DNA sequences can be billions of nucleotides long, the overhead

remains minuscule.

D. Optimizations

Many optimizations can be employed in an actual BWT-based alignment implementation.

There is, for example, no need to store the entire transformation grid as a matrix; instead, it is a

single array of index pointers to represent the starting character of each permutation and,

therefore, each row of the grid (Fig. 11).

Figure 11. Indices color-coded to the row of the conceptual BWT grid they represent.
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Another optimization applies to lexicographical ordering, which, despite being

foundational to the BWT, can slow the entire algorithm down, depending on the algorithm

chosen for character sorting. Our implementation used a combination of Radix Sort and

Quicksort, which, due to index-based optimizations discussed above, was already considerably

space-optimized.

Radix sort uses a structure similar to the FM Index, with a character count and index

offset structure (Fig. 12).

Figure 12. The beginning of the Radix structure. The indexed string (left) and the count and offset table (right).

An array of index pointers the length of the string is constructed and divided into

‘buckets’ (groupings) of appropriate size based on the character count data. The index of the

original string is sorted into this array by the next character (Fig. 13).

Figure 13. String indices are sorted into the buckets based not on character, but the character of the next index. For example,

while ‘$’ sits at index 6, the next character is ‘B’ and so index 6 is placed in the bucket ‘B’.
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After sorting the indices by the next character, they are sorted again by the first character

into another array of buckets, proceeding by index as ordered in the first bucket array (Fig. 14).

Because we perform two rounds of Radix, this element is O(n).

Figure 14. The second index array, with the first placement calculator highlighted in green.

By sorting first by the next character and then by the first character, the indices have been sorted

into buckets by the first two characters (Fig. 15).

Figure 15. The two character buckets are highlighted in green.

Each bucket containing more than one index must be sorted further by the characters after the

first two using Quicksort. This leaves the algorithm with a runtime of O(n log n) like Quicksort

itself, though, due to the two rounds of Radix at O(n), it is a comparatively smaller O(n log n).
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BIOLOGY

DNA sequencing built the basis of the biological revolution over the last 40 years, which

allows us to take biological samples and extract their genetic composition. DNA

(deoxyribonucleic acid) is a helix-shaped molecule that stores the genetic information of each

organism, composed of two linked strands made up of a sugar-phosphate backbone connected by

complementary nitrogenous bases called nucleotides.

These molecules, also known as bases, come in four variants: Adenine (A), Thymine (T),

Guanine (G), and Cytosine (C). Each base has a complementary base with A, T, and C bonds

with G. These ‘base pairs’ are held together by hydrogen bonds, forming the 50 – 300 million

‘rung’ shapes in a human DNA strand.

Understanding these long strands of DNA and how to interpret them is a foundational

element of understanding how our world and its living organisms have come to be. The

information gleaned from DNA sequencing informs the construction of genomes of many

organisms (including previously unknown ones), the diagnosis of genetic diseases, genome

resequencing, and much more (Shendure et al., 2017).

The development of Next-Gen sequencing (NGS) was integral to unraveling the

mysteries of DNA across life. The NGS process uses short reads, which are short fragments of

DNA that come from the genome(s) present in a sample. The short reads get assembled, often

using a reference genome.

A famous example of NGS in use, Illumina (an applied genomic technology company),

has led the charge, applying sequencing by synthesis. Illumina’s process first creates a ‘library’

consisting of DNA broken into fragments of ~200 - 500 base pairs in length; the double-stranded

structure is unraveled into two single strands. Adapters are attached to the strands on either end
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so that each strand can bind to a Flow Cell. A Flow Cell is where the central sequencing by

synthesis process occurs. The DNA strands use the adapters to bind to the flat surface, and

fluorescent-labeled bases (fluorescently-tagged A, C, T & G molecules) are then applied to the

single-stranded fragment to identify the input sequence of the DNA. These fluorescent-tagged

fragments are called ‘short reads.’

When considering genome assembly, we face the challenge of aligning millions, if not

billions, of short reads to a given reference model. Alignment refers to identifying the correct

position of a sequenced short read. The alignment process for short sequences is both

computationally taxing and resource-intensive, a technological hurdle researchers have tried to

solve for years. This is where the BWT’s mathematical properties and biotechnology intersect. A

simple formulation of the BWT’s purpose is to manipulate a string and arrange it to be in a better

form for compression. An emergent practice in bioinformatics uses the short reads and reference

genome as inputs into the BWT, reducing the computational burden that alignment poses.

Short-read alignment algorithms have used a single reference genome for the most part.

However, genomes within species can have a high amount of variation. The human genome, for

instance, differs by 0.1% between any two individuals (the genome is 3 billion base pairs long).

In light of this difference, which can lead to many cases of bias (see ethics section), the field has

adopted the concept of a ‘pangenome,’ a collective “whole-genome sequences of multiple

individuals representing the genetic diversity of the species” (Wang et al., 2022). By combining

different whole genomes to create a hybrid version that can account for significantly more

variation, aligners can more accurately match reads to correct locations within a reference. While

this may be computationally slower initially, matching against a pangenome is much more

efficient than against multiple references. The pangenome project was primarily headed by the
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Human Pangenome Reference Consortium (HPRC), aiming to create a human reference genome

that accurately represents genetic diversity across humans.

Conversely, ‘polygenome’ refers to the hybridization of a reference genome to more

accurately represent a species’ variation. One or more genomes are put together to try and

reconcile or offer more options for the common variation sites or Single Nucleotide Variants

(SNVs, sequence locations where different individuals may have different nucleotides; for

example, individual 1 has an A at position 10445, but individual 2 has a G at the same position

10445). In the same vein, Polygenomes are another method used to reduce the effect of bias as

we try to incorporate different genomes from different ethnicities.

LITERATURE REVIEW

2009 was a landmark year for genomic applications of the BWT in creating short-read

alignment tools, including the software package Bowtie and the Burrows-Wheeler Alignment

Tool (BWA). These two packages use the BWT to speed up alignment and drastically reduce

memory and computational requirements.

Bowtie was developed by Langmead et al. at the University of Maryland. The software

can align over 25 million short DNA reads per CPU hour with a memory footprint of

approximately 1.3 gigabytes. This is nearly 35 times faster than MAQ (the previously most

popular aligner in the field). One of Bowtie’s key features is its ability to deal with mismatches

in input sequences using the BWT’s Last-First ordering properties (Langmead et al., 2009),

described further in the algorithm section.

Following Bowtie, the Burrows-Wheeler Alignment tool (BWA) was created by Li &

Durbin at the Wellcome Trust Sanger Institute. BWA innovates upon previous BWT approaches
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by combining the FM Index with backward searching, lowering string-matching query times to

sublinear speeds. Much like Bowtie, BWA can handle mismatches but allows for other types of

genome mapping beyond allowing for paired-end and gapped alignment mapping. Additionally,

BWA’s output format is the.SAM file (a text file format containing alignment sequence info) is

backward-compatible with commonly used genomics software for added user-friendliness. (Li &

Durbin, 2009).

Independent of BWT-based aligner development, GPU `ization and further processor

acceleration have sped up BWT processing times even further (Sheng et al., 2021; Kähkönen et

al., 2023). BWT’s primary time-consuming step is the initial sorting of each string permutation.

This can be condensed using a Radix sorting algorithm, which sorts the first two characters

before using a conventional quicksort on the remaining characters. This approach is perfect for

DNA, as all strings are permutations of the same letters. Given this new method, GPUs can

efficiently execute this Radix sort on data above ~25 MByte in size, sorting ~1.61

GBytes/second. An even faster algorithm that treats the permutations as suffixes called SAIS can

operate in O(N) time.

A challenge for alignment, however, has been reconciling the differences between

individuals and the variance between reference genomes (see biology section). BWT’s

enhancement of NGS processes has informed proposals to replace standard genome models with

poly-or even-pan genomes, which address the issue of cross-genome variation. BWBBLE, a

short read aligner created by Lin Huang, Victoria Popic, and Serafim Batzoglou, which aligns the

query string to multiple genomes, is an example of circumventing reference genome bias (see

ethics section). Although BWBBLE’s approach is many orders of magnitude slower than the

other versions we have seen (BWA and Bowtie), it is more efficient than attempting to run each
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aligner multiple times with a different reference genome each time. The accuracy and confidence

will be higher than a single run from BWA or Bowtie, which is extremely important when

drawing conclusions that have significant social implications. Due to these advantages,

multi-genomes seem to be a possible future for most short-read aligners to turn to once there is a

more comprehensive collection of various reference genomes.

IMPLEMENTATION & EXPERIMENTS

A. BWT Benchmarking
We implemented and benchmarked five Burrows-Wheeler Transform programs and three

query alignment algorithms in both C and Python. For those written in Python, we analyzed

these programs with the benchmarking library timeit, while in C, we manually recorded the

computer’s timestamps before and after running the program. We performed benchmarking using

20 runs of 50 repetitions each. We took the average runtime over 50 repetitions for each run, and

the minimum run average time across all 20 runs was our output because benchmarking attempts

to measure the speed of a program in optimal conditions since programs can be slowed down by

background activity but never sped up by it. Benchmarks were performed on randomly generated

DNA sequences of varying lengths, and runtime was graphed on a log-log scale versus the

generated string length.

B. Implementations

Our Base BWT Transform was done in Python. To conduct the transform, it stores all

rotations of the reference text and sorts them using Python's built-in sort() method.

Base BWT Querying was our base pattern alignment. We implemented it in Python. It

creates two arrays to represent the first and last columns of the rotation array for an encoded
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reference text and creates a dictionary to map each character from the last column to the first

column. Using the dictionary, it traces a query backward through the columns until it finds all its

matches.

NumPy BWT Transform was the second transform implemented in Python and uses the

NumPy Python library to perform the rotations and sorting to transform the reference text.

C BWT Transform Quicksort was our first C implementation. It stores the rotations and

quicksorts them to execute the transform.

C BWT Transform Radix was our second transform implementation in C. It performs a

Radix sort on the first two characters of each rotation and quicksorts the rest.

BWT Transform SAIS was the most efficient transform algorithm we implemented. It

was done in Python and uses a suffix array to represent and sort the rotations of the reference

text.

Boyer-Moore Querying was a Python implementation of the pattern alignment algorithm

used in CTRL+F or Command+F. It preprocesses a query string to skip as many alignments as

possible. We implemented it so that we could compare it to BWT alignment.

Naive Querying was the most straightforward pattern alignment algorithm and was

implemented to compare it to BWT. It naively checks all possible alignments for a query to the

reference text. Like the other alignment programs, we also implemented it in Python.

C. BWT Transform

As seen in the supplementary material, a Radix sort that does not copy memory can

reduce the sorting time of the Burrows-Wheeler transform, although it will still be in the same

order of time requirement, O(Nlog(N)). To achieve this level of memory control, we

implemented our methods in C. The method we eventually used could be just as easily
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implemented in Python without copying memory, although it would have been far slower than

either C implementation. We chose to use Radix sort on the first two characters of each rotation,

then switch to quicksort for the remaining characters. Instead of fully expanding the

Burrows-Wheeler Matrix into memory, we represented it as a suffix array, directly indexing it

into the original string for the character-to-character comparison function in Radix (See Fig. 16).

Similarly, instead of having separate arrays for each pair of first characters of the string

after Radix sort bucketing, we use a counter array to generate an offset array. The offset array

splits the more extended suffix array into starting characters (See Fig. 17). We run two iterations

of Radix sort: first generating a suffix array sorted by the second character of the string, then

using that suffix array as an order to populate a suffix array sorted by both the first and second

characters. Once the Radix sort is complete, any remaining unsorted suffixes get quicksorted. A

runtime analysis for varying numbers of Radix sorts is included in the supplemental materials.

However, we chose to do two iterations since it matches pairs of first and last characters and is

thus helpful for later constructing the FM-Index.

Figure 16. A BWT matrix, and the corresponding suffix array. Same construction as in Fig 4.
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Figure 17. A breakdown of the full Radix+Quicksort process, as coded.

While the Radix sort BWT is our fastest implementation, it is still O(Nlog(N)) time

growth, as discussed in Algorithms. Another method for determining the BWT in O(N) is the

Suffix Array Induced Sorting (SAIS) algorithm. Much like our Radix implementation, it uses a

suffix array instead of a matrix to represent the potential string rotations. We will not describe the

entire algorithm, but the basics represent each rotation as S-type or L-type, where S-type

rotations are alphabetically earlier than the next rotation, and L-type rotations are later than the

next one. S*-type rotations are S-type rotations for which the previous rotation is L-type (See

Fig. 18).

M M I S S I S S I I P P I I $

L L S* L L S* L L S* S L L L L S

Figure 18. A rotation-type array for the string MMISSISSIIPPII
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The induced sorting algorithm recursively generates the suffix arrays of the

S*-substrings, which start and end with S* characters: in this case, ISSI, ISSI, IIPPII$, and $. We

implemented an induced sorter in Python from scratch and benchmarked it alongside the other

BWT implementations. While it is slower than C implementations, likely due to the higher

overhead inherent to the algorithm and Python being slower than C, it also scales more favorably

than the matrix-based Python implementations (See Fig. 19).

Figure 19. The runtimes of various algorithms on various lengths of input sequences, graphed on a log-log scale. Radix and SAIS

appear as described. Qsort is a C quicksorter that also uses a suffix array, base python is a simple Python implementation, and

numpy bwt is a Python implementation which utilizes the numpy vector math library to speed up some operations.

D. BWT Alignment

To benchmark alignment using our Python BWT alignment implementation against other

alignment methods (See Fig. 20), we implemented two more matching algorithms in Python. The

first was naive exact alignment, which checks every possible alignment the pattern could have.

In the worst case, naive alignment is O(mn) time, where m is the length of the query and n is the

length of the genome. In the best case, it is Ω(n) time. The second algorithm was the
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Boyer-Moore alignment. Like naive matching, it traverses a searchable string from start to finish

but relies on preprocessing the query to avoid unnecessary comparisons. The preprocessing step

takes O(m) time, and the queries take O(mn) time, the same as naive matching. However, the

queries are Ω(n/m) in the best case, and the average case is faster as the length of the query m

increases.

Figure 20. A benchmark comparison of naive alignment, Boyer-Moore, and BWT alignment on query strings

Our C implementation of BWT alignment (not benchmarked) involved three custom

structs to store our data. We made an array that stores pairs of numbers to represent the encoded

letter of the current character and its number of occurrences so far in the reference text. We also

made a 2D array to store the indices where each specific character occurs. Then, we utilized two

of these 2D arrays, one for the first column and one for the last column of the rotation matrix.

Like the int pair array, each dimension of the 2D array represents the character value and its

occurrence. Last, we created a struct to store all these arrays in the same place.
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Character
Index

1st Occurrence 2nd Occurrence 3rd Occurrence

A 2 4 6

B 1

N 3 5
Figure 21. 2D occurrence array for the string BANANA

Once the transform and querying were functional, we expanded our C program to include

a user interface in the terminal. The interface prompts the user to enter the name of a text file that

contains the reference genome. Once the reference genome gets read, the transform gets

performed, and the program prompts the user to enter a query. Typically, entering a query will

return the total number of matches it made to the reference genome, and the interface will also

display them if the genome is short enough. The program can also output the specific indices in

the reference text where matches are. DNA short-read sequencing data gets collected in fastq

files, so the interface allows the user to read queries from a .fastq.

Lastly, we produced a simplistic yet effective GUI built in Python. The GUI is a project

introduction and overview intended to draw a general audience. Modules used in producing the

GUI include Turtles for graphics and OS to sync up the GUI’s working and looking directory.

The GUI consists of nine slides, including a title screen and table of contents. The GUI contains

limited intractability but has enough functionality to allow for repeat viewing of different

screens. For more information, visit our project website and click the link on the homepage for a

guided video introduction and demonstration.
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ETHICS

In this section we seek to address the ongoing debates surrounding information sharing,

informed consent, and equity in DNA sampling. We will split the four primary points of

discussion into the following subsections:

a. Information sharing

b. Informed consent

c. Equity

d. Outlook

This section offers a discussion of areas of emergent ethical contention in genomics. Our

goal with this non-scientific section is to raise awareness about ongoing debates and proposed

solutions.

A. Information sharing

BWT-based read-aligners were responsible for the drastic reduction in the data footprint and

computational cost required to store the entirety of the human genome, according to Langmead

et. Al “For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25

million reads per CPU hour with a memory footprint of approximately 1.3 GB.” This reduction

allowed the field to prosper, and with the advent of modern computers, sharing the entirety of a

human genome over an internet connection is remarkably easy.

This newfound efficiency can be linked to the rise of consumer genetics services, such as

23andMe. The emergence of this new industry has raised concerns regarding how easily

someone should be able to access their genetic information or whether they should be able to
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access it at all. Multiple projects have suggested ethical frameworks to regulate access to

genomic information, including the previously mentioned HPRC.

The potential mishandling of genomic data from improper regulation could expose entire

communities to risk. As written by Kaye, Jane, et al. in a research paper titled “Ethical

Implications of the Use of Whole Genome Methods in Medical Research.” in the European

Journal of Human Genetics: “Cheaper sequencing techniques have enabled commercial

companies to make genomic information available to the public over the internet… Linking

these sources to other information readily available on the internet, such as births, deaths, and

marriage records held by government bodies, provides the means to make information previously

thought to be non-identifying, potentially identifiable.” (Privacy of Research Participants)

Consumers’ privacy could be breached when someone can web scrape publicly available

genomic data from commercial companies to identify individuals. Additional concerns arise

from the release of genetic information and the resultant prospect of the public attempting to

interpret or use their genomic data. Without proper training or context, this could lead to

unnecessary and expensive medical testing that wastes valuable time and resources in medical

fields.

B. Informed consent

A core ethical debate in genomics is centered on employing traditional clinical informed

consent in studies and research concerning genetics. McGuire et al. emphasize in their paper the

challenge of an individual providing consent without fully comprehending the intricate details,

especially given the complexities of genomic research. Soon after, in 2009, Kaye, Jane et al.

noted the escalating difficulty of ensuring truly informed consent as research techniques

advanced. Even before both of these publications, the SACGHS’ 2003 framework sought to
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address some of these concerns, proposing guidelines to maintain the clinical relevance of

genetic data and ensure that genetic information is updated as new knowledge emerges. W

With the rise of consumer genomics, heightened risks associated with data misuse have added a

new dimension to the informed consent debate, as reported by Kaye, Jane, et al. in a research

paper titled “Ethical Implications of the Use of Whole Genome Methods in Medical Research.”

in the European Journal of Human Genetics Companies like 23andWe (23andMe’s research

division) have been proven to repurpose data for additional studies, without participants’

knowledge. Similarly, McGuire articulated concerns about using participant data for disparate

purposes, including studying personality traits or behaviors. In 2022, the HPRC prioritized

participant consent in its research framework. Their plans prioritize data de-identification and

efforts to increase diversity in genomic studies. Despite the HPRC’s dedication to participant

protection, the genomics community still grapples with these ethical debates, indicating a crucial

need for consensus as the field evolves.

C. Equity

The equity issues go hand-in-hand with the challenges posed to genomics by consent,

specifically regarding representation in genomic models. The most common human genome

model currently used by short-read aligners is GRCh38 (and sometimes its older counterpart

GRCh37), which is found to be at best, biased and, at worst, inherently incomplete. The

researchers involved in the HPRC discussed this in their Embedded ELSI (Ethical, Legal, and

Social Implications) Study section: “Most human genomics has been based on individuals of

European ancestry, and the datasets available for analysis are thus biased. As a result, current

precision medicine is based on genomic variation found in populations with primarily European
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ancestry.” The HPRC argues that GRCh38 should be dropped in favor of the pangenome as:

“...[GRCh38] contains biases and errors within a framework that does not represent global

human genomic variation. A high-quality reference with a global representation of common

variants, including single-nucleotide variants, structural variants, and functional elements, is

needed.” (Wang et al., 2022). An additional reason to drop GRCh38 is the impossibility of

tracking structural variants: “Both the limitations of short reads and reference biases mean that

we may have missed more than 70% of structural variants in traditional whole-genome

sequencing studies.” (Wang et al., 2022)

The HPRC has dedicated itself to fostering an international community for the

pangenome reference alignment to engage the diverse populations represented by the genome

actively. As a first step, “The HPRC selected individual genomes for high-quality sequencing

among existing cell lines established by the 1000 Genomes Project, which offers a deep catalog

of human variation from 26 populations. These cells were originally collected from volunteer

donors using consent procedures designed for unrestricted data use, and the cell lines are

available in the Nation Genome Research Institute Biorepository…” (Inclusion Criteria) In

addition to genomes acquired from external sources such as the BioMe Biobank at Mount Sinai

and additional volunteers to aid in tracking down variants, these form a far more diverse baseline

for the polygenome model.

In a very literal sense, the HPRC seeks to rectify the ethical shortcomings of genomics,

advocating for inclusivity and equity at all levels of development and implementation. As stated

at the end of the Embedded ELSI (Ethical, Legal, and Social Implications) Study section: “In

developing a state-of-the-art pangenome reference sequence, the HPRC will continue to

disseminate standards for accuracy and completeness of sequencing, as well as emphasizing the
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importance of ELSI considerations.” (Wang et al., 2022). Pursuing the pangenome cements their

intent to employ ethics, dedication, justice, and equity in advancing genomics.

D. Outlook

We, as researchers of this subject, and as producers of a functional version of a

read-alignment interface, play a role in the expansion of genomics. Our project seeks to

understand the wider implications of the technology we’re working with, and to make the

information we have learned accessible to a general audience. In doing so, we have made a point

to take a deep look at the ethical, equitable and social implications applicable to the field to

which we contribute.

The indisputable truth is that the human genome is rapidly becoming a subject of intense

scrutiny. As it becomes easier to access, store and share genomic information, including across

borders, further questions will arise as the field moves in new directions. We, as a group,

sincerely hope that the HPRC’s framework for an equitable pangenome model will become the

foundation for a new era of collaborative and equitable genomic study. It is imperative to

genomics that studies, NGS technology, and consumer genetics, be held to high ethical standards

in order to mitigate the misuse of genetic information. As best stated in 2008 by McGuire et al.

“It is essential that, as we move forward, we do so with some caution and with conscious

consideration, critical reflection and careful study of the many ethical and social implications of

new developments at each step along the way.”
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CONCLUSION
The exploration of BWT and its applications in genomics has revealed its profound

impact on bioinformatics in short-read sequence alignment. While designed for text

compression, BWT is critical in genomic data processing.

Our implementation and analysis of BWT-based aligners in Python and C have revealed

the efficiency and potential for optimization of the BWT transform. By implementing Radix Sort

and SAIS in the future, we significantly improved runtime and memory usage. These

improvements in space and runtime are crucial in genomics, where processing DNA sequences

swiftly and accurately is vital.

As we delve deeper into genomics data, the ethical considerations become increasingly

significant. The ease of data sharing and storage caused by the BWT brings forth concerns about

privacy, consent, and equity. Our project recognizes the importance of these issues, advocating

for responsible and ethical use of genomic data. The HPRC’s efforts to create a more

representative human reference genome is a step in the right direction that we stand by as it

addresses biases in our current genomic models.

Had time permitted, our project could have explored several different avenues further to

enhance the applicability and efficiency of the BWT. One idea would have been an advanced

GUI, making our tool more accessible to a broader audience. This GUI could include advanced

animations to represent genomic alignment and show the BWT transform being made to enhance

the understanding of our results. Furthermore, an exploration of the application of BWT in

long-read sequencing would have been a significant step for us. Long reads allow for more

contiguous and accurate genome assemblies, making us see repetitive sequences easier than a

short read. This adaptation would address the demands of long-read data and improve genome
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assembly and alignment accuracy, allowing for more comprehensive and accurate genomic

research. Lastly, alignment algorithms assign scores to sequences to achieve a “best” fit. Various

scoring schemes prioritize some alignments over others. Applying this to our current project

would have taken it further in accuracy and would be a better representation of currently used

aligners.

The BWT’s application in genomics highlights its remarkable efficiency and versatility

while bringing to light the ethical considerations of providing our genomic data. As the field of

genomics evolves, it is imperative to balance technological advancements with responsible and

equitable practices. Through its implementation and ethical deliberations, our project aims to

contribute to this ongoing dialogue, aspiring to a future where genomic research is as honest as it

is groundbreaking.
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