The ARP of War
Intercepting and Breaking Encrypted Connections

Cole Weinstein, Robbie Young

Introduction

This pair of Ubuntu virtual machines is meant to teach pentesters about adversary in the middle
(AITM) attacks and vulnerabilities present in the negotiation of symmetric encryption parameters.
In this tutorial, we walk you through how to attack these machines, starting with no privileges and
ending with full root access over the system hosting the company’s website. We work under the
assumption that you are attacking these machines with a Kali VM on the same local network as the
two target servers.

Enumeration

First, let us perform a network scan on both machines using Nmap:

-~

SERVICE
ssh : 3ubuntu®.6 (Ubuntu Linux; protocol 2.8)
http a tt 2.4.52 ((Ubuntu})

3ubuntu@.6 (Ubuntu Linux; protocol 2.8)
(Ubuntu))

Network scans

We notice that for both machines ports 22 and 80 are running. Port 80 indicates that both
machines are using HTTP, so let us visit both using a browser. We note that one of the machines
returns a 403 Forbidden error and the other displays a generic website. For clarity and simplicity,
let’s call the machine at 172.16.49.133 the “webserver” because it’s serving the working webpage.

We see a static website with a simple login form, as well as a redirect to an “images” page. The
image page contains a few images and a redirect back to the home page, but nothing more:

Gaggle

Login:

Username: |E"|:er your Username Password: |E1:er your Password || Login |

All images

Website home page

Welcome, guest!

Home

Website images page (cropped)

Exploitation

We know that both machines are on the same network and that one of them is hosting a website,
but we don’t yet know the purpose of the second machine or the relationship between them. It
doesn’'t seem unrealistic that there’s some communication between the two servers, though,
seeing as they're on the same network. Let’s attempt to place ourselves in the middle of both
servers to learn more about their relationship; we'll do so by exploiting the ARP protocol.

ARP Spoofing

What is ARP?

Computers use IP addresses to identify and communicate with other computers, both on local
networks and across the Internet. However, IP addresses aren’t hard coded into a computer itself,
but are assigned to a machine when it joins the network. When Alice wants to send data to Bob’s
computer, Alice needs to figure out which machine on her local network she should hand the data
off to first. This is done via the Address Resolution Protocol (ARP).

If Bob is not on the local network, she should send the data to the network’s Gateway which wiill
forward the packet on to the next network to eventually reach Bob. However, if Bob is on the local
network, Alice can send her data directly to his machine. To do so, she first looks in her ARP cache
for the hardware (MAC) address associated with Bob’s IP address, then sends her data directly to
that MAC address over the local link.

What is ARP Spoofing?

We can exploit this by sending messages to the webserver which falsely claim that our machine
controls the IP address of the other server. In doing so, we convince the webserver to send all of
the data intended for the other server to us instead. This technique is called ARP spoofing, where
we pretend to control an IP address that we don’t actually control.

And we can do the same thing to the other server, also convincing it to send all of its traffic
intended for the webserver to us instead. By doing both of these, we will have successfully
inserted ourselves between the two computers and will receive all of the packets which are sent
between them.

ARP Spoofing with Ettercap

While there are many tools to perform ARP spoofing, we'll be using Ettercap here to perform our
attack. Ettercap allows us to find, select, and ARP spoof targets with a few clicks, and all in a
graphical interface.

First, launch Ettercap in your attacking machine. You can do so by clicking on the “Applications”
button in the top left of Kali, then searching for “Ettercap”. Open the application labeled
“ettercap-graphical”. The following window should appear:

Ettercap

Ettercap GUI

Click the checkmark button at the top of the window to start Ettercap. Then, click on the
magnifying glass in the top left of the window to have Ettercap scan the local network for other
machines. Once it finishes scanning the network, click on the button to the right of the magnifying
glass (labeled “Hosts List” if you hover over it) to see a list of the machines it found.

E Q Ettercap

Host List =

IP Address MAC Address Description
2.16.4 16:9D:99:38:29:65
00:50:56:F0:4E:07

9d:99ff:fe38:2965 ¢ E 05
.49.254 00:50:56:E8:BB:9A

Add to Target 1 Add to Target 2

Starting Unified sniffing...

Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts...
6 hosts added to the hosts list...

Ettercap hosts list

Select the IP address of the webserver, then click “Add to Target 1”. Select the IP address of the
other server, then click “Add to Target 2”. Afterwards, click on the three dots in the top right corner,
click “Targets”, then click “Current targets”.

mE Q = Ettercap

HostList x Targets x

Target 1 Target 2
172.16.49.133 172.16.49.134

Delete de Delete

Ettercap targets list, with both servers listed

Select both of the IP addresses listed (one under Target 1 and one under Target 2), then click on
the globe icon in the top right and select “ARP poisoning...”. Click OK on the pop-up window that
appears, and congrats! You've successfully ARP poisoned the two servers. The console panel at the
bottom of the screen should now say:

Delete de Delete

ARP poisoning victims:

GROUP 1:172.16.49.133 00:0C:29:AA:58:

GROUP 2:172.16.49.134 00:0C:29:

Ettercap console after successful ARP spoofing

Viewing traffic with mitmproxy

To actually read and interact with the traffic we're now intercepting, we're going to set up a proxy
server. We'll be able to configure our system to send all of the important traffic it receives to this
proxy, which will display it for us in an interactive browser tab. The tool we'll be using to create this

proxy service is mitmproxy.

https://docs.mitmproxy.org/stable/

First, enter the following two commands into a terminal in Kali:

sudo sysctl -w net.ipv4.ip forward=1l

sudo iptables -t nat -A PREROUTING -i ethO -p tcp --dport
80 -j REDIRECT --to-port 8080

These commands tell Kali to forward any TCP traffic it receives to our proxy server at port 8080,
allowing mitmproxy to display the traffic for us to interact with.

Next, open a Firefox window, and navigate to the Firefox settings page. In the search bar, type
“proxy”, and click on the “Settings” button for the “Network settings” header (the only button that
should appear). Select “Manual proxy configuration”,and enter “127.0.0.1”and “8080” as the IP
address and port for the HTTP proxy, as shown below:

Connection Settings

Configure Proxy Access to the Internet
Mo proxy
ct proxy settings for this network

Use system proxy settings

@Maﬂ ual proxy configuration

HTTP Proxy | 127.0.0. 8080
Also use this proxy for HTTPS

HTTPS Proxy

Connections to localhost, 127.0.0.1/8, and ::1are never proxied.
Do not prompt for authentication if password is saved

Proxy DNS when using SOCKS v5

Network settings panel for Firefox, with manual HTTP proxy configured.

Navigate back to your Kali terminal and enter “mitmweb” to launch the mitmproxy application
with a web interface. The web interface should open automatically.

-

File Actions Edit View Help

Launching mitmweb from Kali terminal

mitmproxy

O B 127001

mitmproxy is running.
No flows have been recorded yet.
Configure your client to use the following proxy server:

v HTTP(S) proxy listening at *:8080.

Mitmproxy browser interface on launch

Next, we need to download the certificate for the proxy. Go to http://mitm.it inthe same
Firefox browser, and click “Get mitmproxy-ca-cert.pem” under the “Linux” header. Open a new
terminal window and navigate to the directory where the certificate file downloaded to (likely
/home/kali/Downloads),then enter the following two commands:

sudo mv mitmproxy-ca-cert.pem
/usr/local/share/ca-certificates/mitmproxy.crt

sudo update-ca-certificates

X & mitmproxy x mitmproxy
O a

KaliLinux & KaliTools = KaliDocs ¥ KaliForums e Kali NetHunter Exploit-DB Google Hacking DB OffSec

& mitmproxy

Install mitmproxy's Certificate Authority

-- Windows
[5 oemmvonacennz

Linux

/4 Get mitmproxy-ca-certpem | # Hide Instructions

Ubuntu/Debian

1.mv mitmproxy

~cert.pem /usr/local/share/ca-certificates/mitmproxy.crt

2. sudo upd certificates

Fedora
1.mv mitmp
2. sudo update

rt.pem /etc/pki/ca-trust/source/anchors.

macOS

' /3 Get mitmproxy-ca-certpem | ® Show Instructions

iOS - please read the instructions!

' /3 Get mitmproxy-ca-certpem | ® Show Instructions

Mitmproxy certificate download page, with instructions shown for installing the certificate on a Linux system

~/Downloads
mitmproxy-ca-cert.pem /

~/Downloads

Certificate installation commands in Kali terminal

You now have the proxy server set up, and a browser interface to interact with it! Let’s see if we
can find anything interesting on the website.

Poking around reveals something interesting: it seems like this login request prompted the
webserver to make an HTTP request to the other machine (172.16.49.134) for a file called
“check_credentials.php”. Perhaps this enigmatic machine performs some sort of authentication for
logins to the webserver; lets deem this the “authentication server”, or “authserver” for short.

If we inspect this HTTP request, we can see that there’s a HTML form item called “data”, with some
value that looks like it's url encoded®. We can decode this, but we just get gibberish; the data going
between these servers appears to be encrypted. Let’s see how we might be able to break this
encryption.

® S mitmproxy X 17216.49.

< > C @ O D 127.0.0.1:8081/%

KaliLinux & KaliTools # KaliDocs & Kali Forums o Kali NetHunter Exploit-DB. Google Hacking DB OffSec

c @ @ 4 & @ » x

Replay Duplicate Revert Delete Marky Downloadr Exporty Resume Abort

Flow

Export Interception
Path Method Status Size Time Request | Response Connection Timing

<3| hetpumitmit GET 200 EZCREREL posT http://172.16.49.134/check_credentials.php HTTP/1.1
C};hllp:lfm\tm‘\tlstal\c]bootslrap‘mm‘css GET 200 156.5kb 16ms| Host: 172.16.49.134
5| hitp://mitm.it/static/mitmproxy.css GET 200 620b T7ms| AecePt "/

Content-Length: 149

é‘ http://mitm.it/static/images/mitmproxy-long.png GET 200 120.9kb 12ms; Content-Type: appLication/x-w-form-ur lencoded
|| httpufmitmit/staticlimagesifavicon.ico GET 200 53kb 5ms
URLEncoded form

| ttputtmitm.it/cert/pem GET 200 17kb 3ms
p— data: emnTMRaYNMgQjlyDnkfiq3YSTOMrS2ZneUpiVDNUdO1TZFd1ZES10FgwbUxne
Q hllp:lfh’\itm it/ GET 200 17.4kb Sms|
| hitpilfmitm tlstaticlbootstrap.min.css GET 200 156.5kb 73ms
5| httpilfmitm. it/static/mitmproxy.css GET 200 640b 74ms|
| hetpi/fmiem. itstatic/images/mitmproxy-long.png GET 200 120.3kb 12ms
5_4;| hllp:/h72.15.49ﬂ 33/ GET 200 328b 8ms|
S; hittp://172.16.49.133/favicon.ico GET 404 275b 8ms|
<3 http://172.16.49.133 login.php POST 200 121b 23ms
<3 http:I72:16.49.134 check credentials.php POST 200 186b 9ms

HTTP request for “check_credentials.php” made by the webserver to the server at 172.16.49.134 (the authserver)

The data is actually a url encoding of a baseé4 encoding of a string. We'll see this surface again later once we actually
start communicating with the webserver ourselves.

Denial of Service (DoS)

What is Denial of Service?

We are currently able to intercept the messages between the two servers, but we can’t yet
decrypt them. We know that there must exist some sort of encryption mechanism used between
the two servers, but we do not yet know the details. It seems plausible that upon restarting either
server, there is some handshake or other communication used to establish some encryption
parameters. Towards this goal, we aim to take down the website and trigger a reboot while
intercepting any communications between the server, to see if any of this is true.

A Denial of Service (DoS) attack floods a website with excessive traffic with the aim of denying
access to certain components or the entirety of the website. The attack we use targets the TCP
Handshake, a very common protocol used to initiate communication between two devices. It
works as illustrated:

Alice %’ Bob
+ ACK

—Ak

Diagram illustrating the TCP Handshake

Following the final “ACK” packet sent by Alice, both parties are now ready to communicate.

What is a SYN flood attack?

Here, we use a SYN flood DoS attack to attempt to deny access to the website, which exploits the
TCP Handshake by flooding the target website with repeated initial “SYN” packets that have
spoofed IPs. The website sees each “SYN” packet as a valid request and responds with the
appropriate “SYN + ACK” responses. However, there is never any response from any of these IPs
and the server is left waiting for responses. Eventually, the server is tracking too many potential
responses and cannot handle any new requests to connect to the website, rendering it unusable
for even legitimate connections.

https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

10

Denial of Service with hping3
We use hping3 to execute a SYN flood attack:

sudo hping3 -S --flood --rand-source -p 80 172.16.49.133

HPING 172.16.49.133 (eth® 172.16.49.13

hping in flood m no replies will be shown

SYN Flood initiated from Kali terminal

Here is a quick description of each flag for clarity: the “-S” flag indicates that we want to send SYN
packets, the “-flood” flag indicates that we want to send as many packets as fast as possible, the
“-rand-source” flag indicates that we want to randomize the source IPs within the SYN packets,
and the “p” flag followed by “80” indicates that we want to send these packets to port 80. The
“172.16.49.133” at the end of the command indicates that the webserver is our target for the
flood of packets. Note this command does not terminate and continues flooding until stopped.

After we execute this command, we wait a few seconds and stop it by pressing CTRL + C (this
should be enough traffic to take down the website). We then attempt to visit the website and are
unable to connect (the browser will eventually display a time out message), which confirms that
our attack has indeed succeeded.

The webserver should now be forced to do some sort of reboot, which we can check by
periodically visiting the website until we are able to connect (note the reboot may take a minute or
so to take effect). Now, in our mitmproxy browser interface, we have observed a new packet sent
by the webserver towards the authserver which occurs on reboot:

£| http://172.16.49.134/establish_dh.php POST 200 1.5kb 13ms

establish_dh.php packet

The URL in request made by the webserver to the authserver contains a reference to an
“initialize_dh.php” file. Upon analyzing this packet further by clicking on it, we see that the request

“w_n «_n

contains “p”, “g”, and “pub_key” variables:

URLEncoded form [# Edit || X Replace || £ View: auto~
p: 00dbfcbB9abc3b41b83bb11a384530d1af7781Fc67bababa3d7e72eb6a983e269148533baat3e2980bdf F33d6d2702d30ebc33bdB913ec
g: 02

pub_key: c30dbd6bd4a36T226a5b364debc51dbedf44fT8e2bdel18405ce1342981b9c9799c36b053e7bal81ladac13f2a487d42d732639bTh2062ct

establish_dh.php packet contents

11

“w . » «_n

The above information indicates that this is a request that is related to key negotiation, for “p”, “g”,
and “pub_key” are common names for key negotiation variables.. Additionally, we can safely infer
that this is a request attempting to initialize a Diffie-Hellman key exchange, for the name of the call
to “establish_dh.php”, as well as the variables in the packet match what is expected in the
initializing of Diffie-Hellman.

Exploiting Diffie-Hellman

What is Diffie-Hellman?

Diffie-Hellman is a key exchange protocol that is used to generate a shared key between two
parties. Particularly, it allows for two parties to communicate and agree on a key on a public
network, such that anybody who listens in is unable to calculate the same key. This key exchange
works as follows:

Alice Bob
1) Decide on 3) Send (g,p,A) 4) Decice on
(a,9,p) - (b)
2) Calculate 6) Send (B) 5) Calculate
A = g2mod p - B = g’mod p
K = B2mod p K = AP mod p

Diffie-Hellman Key negotiation illustration

However, Diffie-Hellman is vulnerable to an AITM attack. If an attacker places themselves in the
middle of Alice and Bob, the attacker is then able to negotiate two separate keys independently
with Alice and Bob, such that there is a Diffie-Hellman generated key between Alice and the
attacker, and another between Bob and the attacker.

Exploiting Diffie-Hellman

We use these scripts in this section to help automate and do the above described key negotiation.
If following, first make sure to install these scripts and place them within the same directory in
your Kali machine. Note in this section we negotiate a key solely with the webserver and exclude
the negotiation of a separate key with the authserver for simplicity.

https://www.infoworld.com/article/3647751/understand-diffie-hellman-key-exchange.html
https://github.com/ColeWeinstein/comps/tree/main/php_scripting

12

We previously learned that the webserver upon reboot sends a request to the establish_dh.php
file located on the authserver to initialize the Diffie-Hellman key negotiation. Therefore, we
configure mitmweb to intercept these requests. In mitmproxy, go to the Start tab, and paste the
following into the top right of the page (the additional filter here for “check_credentials.php” is
used in a later step):

~u 172.16.49.134/establish dh.php | ~u
172.16.49.134/check credentials.php

n ~u172.16.49.134/establish_dh.php | ~u172.16.49.134/check_credentials.php

mitmproxy intercept filters

Now, we DoS the website again in order to trigger the initializing of the key negotiation. We use
hping3 as before described to run another SYN flood attack on the webserver, again stopping after
only a few seconds.

After the webserver is finished rebooting, mitmproxy intercepts a new packet that is attempting to
initialize the Diffie-Hellman exchange with the authserver (again this may take a minute or so to
appear):

<>| http:/[172.16.49.134/establish_dh.php il POST 5 m

Intercepted establish_dh.php request

We can analyze this packet as before, copying the “pub_key” value. In the terminal, navigate to the
directory where our dh webserver.php scriptis located, and run it passing in the copied public
key value:

~/Documents

dh_webserver.php use (cropped for clarity)

This script prints out our new public key as well as stores our generated private key, which we save
and copy. We can now forward the establish_dh.php request intercepted by mitmproxy towards
the authserver by clicking Resume. Almost immediately, we receive a response from the
authserver and can view its contents:

13

<>|http:/[172.16.49.134/establish_dh.php UfPOST 200 Skt 8min

Intercepted establish_dh response

Request | Response | Connection Timing
HTTP/1.1 200 OK

Date: Wed, 13 Mar 2024 09:06:27 GMT
Server: Apache/2.4.52 (Ubuntu)

Vary: Accept-Encoding

Content-Length: 512

Content-Type: text/html; charset=UTF-8

XML [# Edit || &Replace || 2] View: auto «

a6181eb6afr598d6aad26ch5e620e3c2a70a2942294b9970901b83412dT1b02e76a964309cc426T56674a321ca28c221a5¢c750c64197e6a088a6b81L

Intercepted establish_dh.php response contents

We now modify this intercepted response by clicking Edit, and replace the data with our copied
public key. We then forward this modified response to the webserver by again clicking Resume,
such that our public key is now sent instead of the one generated by the authserver.

Now, the webserver has received our response, and generated a private key based on our sent
public key. Therefore, we now have a shared private key with the webserver.

Gaining Elevated Access

As we now are able to freely communicate with the webserver with our shared private key, we can
now modify the requests made when the webserver attempts to authenticate a user. We do so by
logging in with false credentials, and modifying the response made from the authserver to the
webserver to approve these false credentials.

We first must generate and encrypt our response for the authentication of our malicious user.
Note here it would be required to set up a separate shared private key between us and the
authserver to learn how the requests and responses are formatted. However, we exclude this
additional step in this tutorial for simplicity.

In the terminal, we navigate to the directory where our encrypt.php script is located, and we
run it passing in Approved:admin (Approved indicates that the user is approved and admin
indicates the privilege level of the user; this is how the webserver expects the response to be
formatted). Run the following, copying the output:

php encrypt.php Approved:admin

14

We then login to the website with any credentials. Following this, the webserver sends an
authentication request to the authserver, which we intercept with mitmproxy?.

:| ttp://172.16.49.134/check_credentials.php Bl POST 165b

Intercepted check_credentials.php request

We then forward this request to the authserver, and intercept the response back:

Request | Response | Connection Timing

HTTP/1.1 208 OK

Date: Wed, 13 Mar 2024 09:06:27 GMT
Server: Apache/2.4.52 (Ubuntu)

Vary: Accept-Encoding

Content-Length: 512

Content-Type: text/html; charset=UTF-8

XML [# Edit || LReplace || & View: auto =

a618leb6afr598d6aaf26cb5e620e3c2a70a2942294b9970901b83412dT1b02e76a964309cc426T56674a321ca289c221a5¢c750c64197e6ab88a6bsl

Intercepted check_credentials.php response

Now, we edit this response and replace the data with our copied encrypted approval message.
Upon forwarding this modified request to the webserver, we navigate to the website, and receive
an approval:

Upload image

O A 172.16.49.133

Welcome, admin!
Home

All images

Upload a new image:

| Browse... | Mo file selected. | Upload |

Admin page of the website

We have now successfully logged into the website with an admin account.

2This login intercept is why we included the second filter in mitmproxy earlier on.

15

File Upload

Upon gaining access to the website as an admin user, we see that there is the added ability to
upload images to the website:

Upload image

O & 172.16.49.133/adm

Welcome, admin!
Home

All images

Upload a new image:

| Browse... | No file selected. | Upload |

Admin page of the website

If we upload the right kind of file and set up a listening server on our attacking machine, we might
be able to get a remote shell into the webserver. This is called a reverse shell, and it allows us to
interact with the webserver as if we were physically in front of it.

If we look at the url of the current page, we can see that the pageis called admin . php. This tells
us that the webserver uses php, so let’s try to upload a php reverse shell to it. Pentestmonkey has a
robust php reverse shell script that can be found here:

Download the php file from the GitHub, then open it. Change the ip variable to the IP address of
your Kali machine and the port variable to 8888. Both of these variables have a comment reading
“CHANGE THIS” next to them.

Edited php-reverse-shell.php file

https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php

16

Save your changes, and enter the following command into the terminal:

nc —-lvnp 8888

k-

File Actions Edit View Help

~/Documents

tening on [a

Netcat command to open a listener for the reverse shell

This creates a listener on port 8888 on our attacking machine which we’ll use to accept the reverse
shell sent by the webserver.

Upload the (modified) php reverse shell script, then click “Upload”. If the upload is successful, the
webserver should give you a link to view your “image”. Click on the link to execute the php code
and spawn the reverse shell.

® S mitmproxy ® 172.16.49.133/image_uploa

O & 17216.49.133/image

Home
All images
Upload image

Image successfully uploaded. View your image

Successful upload of php reverse shell

17

Privilege Escalation with Vi

Now that we've acquired a shell within the webserver, let’s try to escalate our privileges and get
root access. Entering “whoami” into this reverse shell reveals that we're currently logged in as
“www-data”. We can see if this user has any super-user permissions by trying “sudo -1".

kali@kali: ~/Documents

File Actions Edit View Help

~fDocuments

IN) [17
-Ubuntu >\ 7 48 4 GNU/Linux

turned off

r/bin\:/sbinV\:/bin\:/snap/bin, use_pty

mands on gaggleweb:

Sudo list command for www-data, revealing permissions to execute vi as root

It turns out, www-data has access to the vi editor as root (and even without requiring a
password!), which is quite convenient for us. We can edit a file using www-data’s elevated
permissions with the following command:

sudo vi tmp.txt

kali@kali: ~/Documents
File Actions Edit View Help
|

"tmp.txt" [New]

Vi editor on webserver from Kali machine, editing tmp.txt as root

After a bit of a delay, we get a (very janky) vi editor. Vi has some interesting features, including a
command interface that allows a user to directly execute commands on the host system, with
whatever permissions the vi command itself was run as. We can therefore get ourselves a
permanent shell as root by typing“: ! /bin/bash” once our editor has loaded.

18

And voila! Entering “whoami” reveals that we are now in as root!

kali@kali: ~/Documents

File Actions Edit View Help

:1/bin/bash

Break out of vi into shell as root

19

References

ARP and ARP Spoofing

What is ARP Spoofing | ARP Cache Poisoning Attack Explained — Imperva
https://www.imperva.com/learn/application-security/arp-spoofing/

What is ARP Spoofing? How to Prevent & Protect — CrowdStrike
https://www.crowdstrike.com/cybersecurity-101/spoofing-attacks/arp-spoofing/

ARP Poisoning: What it is & How to Prevent ARP Spoofing Attacks — Varonis

https://www.aronis.com/blog/arp-poisoning

Setting up MITMProxy

Getting Started — MITMProxy
https://docs.mitmproxy.org/stable/overview-getting-started/
Introduction to MITMPROXY — ZBunker
h //Www m/watch?v= L WD
MitM Proxy on Kali — Collfuse
https://collfuse.com/mitm-proxy-on-kali/
Source for Kali IP forwarding instructions

Denial of Service

What is a DDoS Attack: Types, Prevention & Remediation — Onelogin
https://www.onelogin.com/learn/ddos-attack
What is a distributed denial-of-service (DDoS) attack? — Cloudflare

https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

TCP SYN Flooding

TCP 3-Way Handshake Process — GeeksforGeeks
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/

SYN flood DDoS attack — Cloudflare
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

How To Perform TCP SYN Flood DoS Attack & Detect It With Wireshark - Kali Linux Hping3 —

FirewallCX
https://www.firewall.cx/tools-tips-reviews/network-protocol-analyzers/performing-tcp-sy
n-flood-attack-and-detecting-it-with-wireshark.html

TCP SYN Queue and Accept Queue Overflow Explained — AliBaba Cloud
https://www.alibabacloud.com/blog/tcp-syn-gueue-and-accept-qgueue-overflow-explained

599203

https://www.imperva.com/learn/application-security/arp-spoofing/
https://www.crowdstrike.com/cybersecurity-101/spoofing-attacks/arp-spoofing/
https://www.varonis.com/blog/arp-poisoning
https://docs.mitmproxy.org/stable/overview-getting-started/
https://www.youtube.com/watch?v=8qGL58yGWD0
https://collfuse.com/mitm-proxy-on-kali/
https://www.onelogin.com/learn/ddos-attack
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://www.firewall.cx/tools-tips-reviews/network-protocol-analyzers/performing-tcp-syn-flood-attack-and-detecting-it-with-wireshark.html
https://www.firewall.cx/tools-tips-reviews/network-protocol-analyzers/performing-tcp-syn-flood-attack-and-detecting-it-with-wireshark.html
https://www.alibabacloud.com/blog/tcp-syn-queue-and-accept-queue-overflow-explained_599203
https://www.alibabacloud.com/blog/tcp-syn-queue-and-accept-queue-overflow-explained_599203

20

Exploiting Diffie-Hellman

Diffie-Hellman key exchange — Wikipedia
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman key exchange
In specific, see Description and Security
Understand Diffie-Hellman key exchange — InfoWorld
https://www.infoworld.com/article/3647751/understand-diffie-hellman-key-exchange.ht
ml
Documentation for PHP functions used in Diffie-Hellman and symmetric encryption
openssl_dh_compute_key()
https://www.php.net/manual/en/function.openssl-dh-compute-key.ph
openssl_encrypt()
https://www.php.net/manual/en/function.openssl-encrypt.php
Comment by Nick on openssl_encrypt() page giving some tips on the openssl library
https://www.php.net/manual/en/function.openssl-encrypt.php#119346

PHP File Uploads

Reverse Shell: How It Works, Examples and Prevention Tips — Aqua Security
https://www.aquasec.com/cloud-native-academy/cloud-attacks/reverse-shell-attack/
Reverse Shell — Imperva
https://www.imperva.com/learn/application-security/reverse-shell
Example reverse shell shown in Python, not PHP
PHP Reverse Shell Code — pentestmonkey
https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php
Source code for php reverse shell file used in the file upload attack

Privilege Escalation with Vi

vim — GTFOBIns
h ://gtfobins.github.io/gtfobins/vim

GitHubs

Cole Weinstein
https://github.com/ColeWeinstein/comps

Robbie Young
https://github.com/robbie-young/comps

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Description
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Security
https://www.infoworld.com/article/3647751/understand-diffie-hellman-key-exchange.html
https://www.infoworld.com/article/3647751/understand-diffie-hellman-key-exchange.html
https://www.php.net/manual/en/function.openssl-dh-compute-key.php
https://www.php.net/manual/en/function.openssl-encrypt.php
https://www.php.net/manual/en/function.openssl-encrypt.php#119346
https://www.aquasec.com/cloud-native-academy/cloud-attacks/reverse-shell-attack/
https://www.imperva.com/learn/application-security/reverse-shell/#preventing-reverse-shell
https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php
https://gtfobins.github.io/gtfobins/vim/
https://github.com/ColeWeinstein/comps
https://github.com/robbie-young/comps

