
^[\s\u200c]+|[\s\u200c]+$

The Parsing and Analysis of
[rR]eg(ular)* *([eE]x(pression(s)*)*)*
Will Beddow, Antonia Ritter, Shiyue Zhang,
Vicente Riquelme

The Challenges of Using Regexes

Regular
Expressions

[bc]at

#?([\da-fA-F]{2})([\da-fA
-F]{2})([\da-fA-F]{2})

bat cat

Any hex code, for example
#FF5733

A regular expression (regex)
is a pattern used to match
particular strings

Project Overview

● Our tool evaluates:
○ Security
○ Understandability
○ Generalizability

Wh(
what |
why
)

(In|Out)put

Directory containing:
^[\s\u200c]+|[\s\u200c]+$ Regex-Library Analysis and

Recommendations

https://docs.google.com/file/d/1_iRctEquxs0fRl91hcur6_taU-kfxY-8/preview

Output

Targeted tips
and analysis

Excerpt of file
where
expression was
found

The raw
expression, and
where it was
found

Structure of the library

Data Format

Brew

Finding Regular Expressions in Files

Extraction Process Overview

General Purpose Tokenizer: A Finite State Machine

Parsing {
token: “g“
type: Flag
flag: Global

}

{
token: “\t“
type: Escape
escape: Tab

}

Parsing

(.*)\W+
1. token: “(“
type: GroupReference
groupref: OpenCapture

2. token: “.“
type: CharacterClass
characterclass: Dot

3. token: “*“
type: QuantifierModifier
quantifiermodifier: Star

6. token: “+“
type: QuantifierModifier
quantifiermodifier: Plus

4. token: “)“
type: GroupReference
groupref: CloseCapture

5. token: “\W“
type: CharacterClass
characterclass: NotWord

Understandability Component

● Single bounded class:
S{3} = SSS = S{3,3}

● Lower bounded class:
A{2,} = AAA* = AA+

● Custom Character class:
[0-9a] = [\da] = [0123456789a]

● Literal class:
\a\$ = \a[$] = \x61\x24 = \141\044

Carl Chapman, Peipei
Wang, and Kathryn T.
Stolee. 2017. Exploring
regular expression
comprehension.

Understandability Component

a\dSS

\x61[0-9]S{2}

Generalizability Component: Regex Engines

Generalizability Component: Functionality

Security Component

● What is a ReDoS attack?

○ “Regex Denial of Service”

○ Error when a certain input string takes a regex exponential time
to match

● Example:

○ regex = “^(([a-z])+.)+[A-Z]([a-z])+$”

○ input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!”

ReScue Algorithm

“ReScue: Crafting Regular
Expression DoS Attacks”
Yuju Shen et al., Nanjing
University

Input: Regex
Output: ReDoS String

● Genetic algorithm for
incubation.

● Most desirable strings
kept each generation

“Natural
Selection”

Seeding (Phase 1)

● Regex = “hello.{1,10}goodbye”

● Extract tokens from expression:

○ “hello”

○ “goodbye”

● Make seeds from the tokens, mixing in random characters:

○ “goodbyeYY7goodbye6qL<GWhellogoodbye2>hello”

○ “hellogoodbyehellogoodbyeQhellogoodbye#K(goodbye
\\\\fXhellohello4hellogoodbye”

Genetic Algorithm Mutations (Phase 2)

Mutation: Crossover:

Genetic Algorithm Mutations (Phase 2)

Randomized Mutation:

Regex as Finite State Machines

● Any regex can be
described as a Finite
State Machine

● Match steps are graph
dependent

● Implications for
fitness functions and
timing

State diagram for regex:
(a*cb*d)* a*cb*

Timing as a Fitness Function

● Slower strings = fitter

● Kept fittest strings in each generation

● RESCUE finds fittest strings by calculating
matching steps per character

○ Essentially O(match(regex, input))

● This requires a regex engine

Timing as a Fitness Function

● Matching steps τ(s) ➤ process time t(s)

● Multiprocessing to allow for timeouts

s = input string

τ(s) = matching steps of s

t(s) = time to match s

● Instead we use time(match(regex, input))

Pumping (Phase 3)

XslowZ -> XslowslowslowZ

Pumped output causes ReDoS
attack if used as input

ReScue Algorithm

Example Regex:
^<\!\-\-(.*)+(\/){0,1}\-\->$

Example Output:

'<!-->`!--VvFcwh\hh^b!--^b!--' (6s)

'<!-->`!--VvFcwh\h^b!--h^b!--^b!--'

(4m)

Evolutionary Tracks

^(([a-z])+.)+[A-Z]([a-z])+$^(?=hello)[a-z]{5}

0.0002 seconds
1 second

(secs)

Generation Generation

1000 18

Output

Annotation Fields
● Note
● One of

○ Token
○ Expression
○ Entity

References

● Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu.
2018. ReScue: crafting regular expression DoS attacks. Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. Association for Computing Machinery, New York, NY, USA,
225–235. DOI:https://doi.org/10.1145/3238147.3238159

● Carl Chapman, Peipei Wang, and Kathryn T. Stolee. 2017. Exploring
regular expression comprehension. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2017). IEEE Press, 405–416.

https://doi.org/10.1145/3238147.3238159

[qQ](uestions| *\& *[aA])\?*

