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I JSettlers 
  
JSettlers is a Java program that consists of Settler of Catan (SOC) playing bots and framework 
for other SOC-playing AIs to train. You can run the program locally from a machine of your 
choice. Also, it includes graphics enabling humans to play and visualize the games that bots are 
playing. 
  
Because JSettlers is openly available to the public, it allows AI creators to compare their 
performances, track their improvement as a community and build a census around what works in 
creating SOC-playing AI, enabling replicability of the previous research. In short, JSettlers 
empowers the game AI community to advance itself and develop better AIs. 
  
Current JSettlers provides two types of Heuristic bots to play with: fast and smart. Heuristic 
means they follow rules of thumb defined by humans to play SOC to a certain degree in their 
models. 
  
Smart bot is mostly a better player than the Fast bot. Smart bot wins 30% of the time when it 
plays SOC with three Fast bots. Fast bot is named fast because it has a heuristic algorithm that is 
simpler and faster than that of the Smart bot. Smart bot is named smart because it was designed 
to win the Fast bot therefore smarter than the Fast bot that JSettlers originally had I assume.  
  
In general, the Fast and Smart bots systematically analyze the game state, future dice 
probabilities, possible actions by itself and its opponents, and more to answer the question: 
which choice would increase its chance of winning?  
  
We wanted to create an AI that can play against the Smart Bot and win. We extended the Smart 
bot. 
  
The strategy of the smart bot: 

 



Let’s take an example. On the SOC board, a Smart bot has four roads in red and a settlement in 
pink. There are also possible actions to take. In yellow, A and B are options of building a road 
whereas C is an option to build another settlement.  

In order to decide the next move, the Smart bot simulates simplified games for A, B, and C 
choices and calculates a quantity called WinGameETA. WinGameETA is an expected number of 
turns required for winning after the choice is made. In the simplified simulations, the smart 
heuristic algorithm considers 6 scenarios in parallel with “a while loop” which includes, 
finishing the game with “2 settlements (including necessary roads' ETA)”, “2 cities”, “1 city, 1 
settlement (+roads)”,”1 settlement (+ roads), 1 city”, “Buy enough cards for Largest Army”, and 
“Build enough roads for Longest Road.” When Smart bot simulates a simplified game for the 
choices A, B, and C, the simulation runs possible game scenarios till one of them reach 10 
victory points first in a while loop. Simulation of a choice returns WinGameETA as the number 
of turns that were required for the best scenario. 
  
As a bigger picture, observe that each choice gets a simplified game simulation. Each simulation 
further considers possible actions to take according to the six scenarios. Then finally, the 
expected WinGameETA of each choice is considered by Smart bot’s overarching heuristic 
algorithm.  
  
Simply, Smart bot could choose the move with the least WinGameETA. But Smart bot’s 
algorithm is more complex than that considering how its choice impacts WinGameETA of itself 
and its opponents. The image below shows the WinGameETA expectation a Smart bot had at the 
end of each turn for itself in blue and for its opponents in red, orange and green. 
 
This chart shows all the win ETA predictions made by a single smart bot for itself and each of its 
opponents over the course of a single game of Catan. The X-axis gives the turn number and the 
Y-axis is the win ETA prediction in turns: 

 



The fact that WinGameETA calculation is requested in every turn shows that it is a crucial 
component of the Smart Bot’s algorithm. If we could create a WinGameETA calculator for 
Smart bot that is better than its current methodology, performance of Smart bot should improve. 

We chose genetic programming to evolve one polynomial that calculates WinGameETA 
throughout the game because  

● we didn't see in the scholarship the use of evolutionary AI with genetic programming in 
building SOC-playing AI; 

● a polynomial WinGameETA calculation had an advantage of being faster than Smart 
bot’s current approach; and 

● polynomial WinGameETA calculations are easier to interpret than Deep Neural Neutral 
approaches we found in the literature. 

  
Our Evolutionary AI replaces JSettler’s WinGameETA calculator method.  

 
II Trainer Walkthrough 
 
The most interesting and complicated part of the Trainer class (in python/trainer.py) is the train 
function. This function takes the following input parameters: 

● mutation_percent: A value between 0 and 1, which determines what proportion of the 
bots in each generation should be generated using mutation. The rest of the bots will be 
generated using crossover. 

● generations: A positive integer, which determines how many repetitions of the general 
training structure the bots will go through. 

● games_per_bot: A positive integer, which determines how many games each bot will 
play per generation to determine its fitness score. 

● fast_count: 0, 1, 2, or 3, the number of fast bots which each evolutionary bot will be 
playing against. Each will have 3 total opponents, and any which are not fast will be 
smart. 

● bots_per_sim: A positive integer, which sets how many bots will be in each simulation. 
(Excess bots will be in a non-full simulation.) We recommend roughly 100 for fully fast 
bot games and roughly 30-40 for smart bot games. If this is too large, games may begin 
to fail. 

● operator_probability: String form of a number between 0 and 100, which sets the percent 
chance that a mutated node will become an operator, assuming it isn’t at the maximum 
depth. 

● max_children: Integer, which sets the maximum total descendent count a node can have 
before we exclude it from the pool of possible mutations. If this is set to -1, there is no 
such restriction. 

● constants_only: Boolean, which, if true, forces all mutations to be changes to constants 
rather than altering or producing anything else. 

It converts one set of bot trees and their associated fitness scores into a new set of bot trees, using 
the initial set as a basis, in the following fashion. 
 



The first several lines of the train function are set up, copying variables around (lines 93-110). 
The function then proceeds to do the actual training, looping through it a number of times equal 
to the desired number of generations. Each generation, the trainer first sets up the simulations 
(lines 120-135), then runs them and records the scores (lines 137-146). Each of these simulations 
holds several instances of JSettlers, each containing one copy of one of the evolutionary bots in 
addition to some number of fast bots and some number of smart bots. There is one simulation for 
each bots_per_sim evolutionary bots. The number of fast bots is equal to the parameter 
fast_count. All games will be 4 players, with any remaining players being smart bots. Each 
JSettlers instance runs a number of games equal to the parameter games_per_bot. The 
simulations then average the scores of each bot over those games, adding an amount equal to the 
win_bonus parameter to any games in which the bot won, and uses that mean as the bot’s fitness. 
In the final run or if the generation is a generation where it should print, it prints out all the bots 
(lines 149-154). After that, the train function begins the actual training part. 
 
The training begins by dividing the bots into two groups, the high performers and the low 
performers (lines 157-167). It does this by taking all the bots, calculating the total fitness, and 
then multiplying that by the performance cutoff, which was input as the parameter 
performance_cutoff (lines 157-160). The goal is to have some fraction of the total fitness 
classified as high performers, with the fraction set by the caller, so this allows the function to 
know how much total fitness it should put in the high performer bin. Having done that, it sorts 
the bots by fitness (line 161) and goes through them one by one, putting trees into the high 
performer list until their total fitness has at least reached the target value (lines 163-165). The 
trees up to that one become high performers (line 166), while the rest are low performers (line 
167). 
 
Having done this, the fitness scores now need to be converted into weights. To do this, they are 
normalized (lines 170-173), by calculating the total fitness among high and low performers, then 
dividing the high performer fitnesses by the high performer total (line 172) and doing the 
equivalent for the low performers (line 173). This will be useful later. 
 
The code now computes how many crossovers and how many mutations to do (lines 176-184). 
This is reasonably straightforward, multiplying the total number of bots to produce by the 
mutation_percent parameter to get the mutation count and letting the rest be crossovers (lines 
176-177). Notable is that crossovers produce two trees, so if there are an odd number of 
crossovers, one mutation is replaced with a crossover, unless there are zero mutations, in which 
case one crossover is instead replaced by a mutation (lines 178-184). 
 
The next step is to produce some storage space, as the trainer will need to use the files containing 
the current bots to hold the next generation, and the parent bots need to live somewhere in the 
meantime. To do this, the code first copies over the pointers to the files and the fitnesses, 
separating them from the original values in gen_results (lines 188-189), then actually copies the 
files, first of the high performers (lines 190-194) and then of the low (lines 195-199). The copies 
are done by a copyfile call, and the names of the prior files are retained in gen_resilts, where they 
will be input into the next generation’s call. 
 



Finally, the trainer calls the actual mutation (lines 202-211) and crossover (lines 214-229). The 
mutation and crossover operations are done separately (see section 3 for details), only being 
called by the trainer (lines 211, 229). The trainer’s job here is to determine which bots to 
mutate/crossover from and where to put the results. Selecting of bots is done by two weighted 
random selections, first picking whether to use a high or low performer with weights 
high_performer_sample_rate and 1-that, then picking a bot within the selected group with 
weights equal to the normalized fitnesses (mutation: lines 204-209, crossover: lines 215-226). 
Crossover, of course, does this twice, once for each parent. As gen_results is no longer being 
used to store parents, after the prior storage space steps, the code places the resultant trees in the 
next tree in gen_results (mutation: line 210, crossover: lines 227-228). With that, the creation of 
the next generation of bots is complete. 
 
Lastly, the trainer has to clean up all the files it created along the way. As it has the names of all 
those redundant files stored in the relevant lists, this simply requires going through those lists 
and removing the files they reference (lines 232-237). After this, the trainer proceeds to the next 
generation, and repeats (returning to line 111). 
 
III Training Operations (Initialization, Mutation, Crossover) 
 
Some of the operators used by the training method were programmed in the jsettlers code itself. 
The calls to the jsettlers code are in the file python/test_set_up.py and the call main methods in 
src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotBrain.java. We set it up this way 
because it allowed us to reuse resources from the Evolutionary AI tree simplify the code. Having 
these operations in Java also let us take advantage of the gson library which allows you to read in 
a text file to a Java class. This made it so we wouldn’t have to parse evolutionary tree files 
manually. One important thing to node is that each genetic parse tree has a maximum depth 
allowed to prevent trees from growing infinitely large 
 
Mutation 
 
Mutation takes 5 parameters: 

1. The name of the bot to mutate (must correspond to an existing bot file) 
2. The name of the bot after mutation 
3. The probability that the mutated node becomes an operator (a string from 0 - 100) 
4. The maximum number of descendents the mutated node is allowed to have (String) 
5. Whether or not only constant value nodes can be considered for mutation (“true” or 

“false”)  
 
The mutation method starts on line 972 of Evolutionary bot brain where it reads all the 
parameters in (973 - 977), then reads in the bot tree (978 - 979). Then it calls mutate on the bot 
tree (980) before printing to the new file (981) 
 
The tree mutation method called in line 980 is declared on line 662. This method gets a random 
node from the tree that satisfies the max_children and constants only_constraint (line 666). If no 
node satisfies the conditions then the function returns and the tree is not mutated (667 - 669). The 
node to be mutated is then given a pointer to the genetic tree itself (670). A boolean expression is 



evaluated to determine whether or not the node to be mutated meets the conditions to be a 
constant value (672) before the mutation method on the node is called on line 673 passing in the 
operator probability and whether or not the node can be a constant. A node is a constant if and 
only if the following conditions are met: 

● It is a leaf node 
● It is a right child 
● Its parent is a multiplication operator 

 
The node mutation method is declared on line 271. This method starts by randomly determining 
whether or not the mutated node will be an input node or an operator node weighted by the 
operator probability. If the node is assigned to be an input node, if canBeConstant is set to True 
we assign the node to be a random constant, otherwise we assign the node to be a random input 
node and finish. If the node is assigned to be an operator, we assign it a random operation then 
create two random children for it. The same operator probability a parent used is also used in 
determining whether or not the children are operators or inputs. If one of the random child nodes 
is an operator then that node also gets two random children. This process repeats until all nodes 
are inputs. Throughout this whole process the max depth of each node is tracked and if any 
node’s children would exceed this limit, then that node is automatically set to be either input or 
constant type. 
 
Initialization 
 
Initialization takes a single parameter: The name of the new robot you are creating. It starts on 
line 967 of evolutionary bot brain where it initializes a new bot brain in line 969 before creating 
a new GeneticTree in line 970. In the genetic tree, all the input values and operations are set up 
(519 and 520). Afterwards the root of the new tree is assigned to some random input. This node 
doesn’t matter, however, because in the very next step (line 522) this node is mutated with an 
operator probability of 55%. After mutation finishes the tree is printed to a file (line 523). To 
summarize, a new tree is created by creating a tree with one node in then mutating that node.  
 
Crossover 
 
Crossover takes 5 parameters: 

1. The name of the first bot to crossover (must correspond to an existing bot file) 
2. The name of the second bot to crossover (must correspond to an existing bot file) 
3. The name of bot 1 after crossover  
4. The name of bot 2 after crossover 

 
Crossover starts in line 983 of the EvolutionaryBotBrain. It starts by reading in the parameters 
and then initializing the two bot trees before calling crossover by passing in the 2 trees (line 992) 
and printing the new trees to a file. 
 
The crossover method itself is declared on line 860. First, it determines which of the two trees to 
get the random node from first (863 - 870). Then, we perform depth first search on the first tree, 
creating a list with each node, its depth, its branch depth (the depth of the node’s subtree - the 
node's depth),  and its parent (873). Afterwards, if the node is just a root, we return without doing 



crossover (875). Otherwise we choose a random node from the list to be the first candidate from 
crossover. Call this node S1 (selected node 1). 
 
Next we get a node from the second tree for crossover. Similar to the first tree, we create a list of 
candidate nodes using the second tree’s nodes with each node’s parent, depth, and branch depth 
(880). One difference is that a node from tree 2 is only added to the candidate list if that node 
meets the following conditions: 

● Selected node 1 depth + tree 2 node branch depth < max depth allowed 
● Selected node branch depth + tree 2 depth < max depth allowed 

 
These conditions ensure that after crossover both new trees will not be violating the max depth 
rule. Once we have the candidate list from tree 2 we select a random node from it in line 884. In 
lines 886-896 we actually do the crossover, by changing the pointers of the selected node’s 
parents while also noting if the selected nodes are left or right children. Lastly, we have to 
recalculate the depths of all nodes in both trees (lines 899 and 900). 
  
IV Experimental Results 
 
The results from all of our experiments are found in a folder titled “Experimental-Results”. 
Within this directory each folder contains the results of one experiment and follows the naming 
convention [date]_[test-name]. In addition to these results folders there are two other folders 
titled “bad_tests” and “old_trainer_tests”. The bad_tests folder contains results from experiments 
that ran when there was a major bug in the Evolutionary robot logic that made it use more of the 
smart robots logic. Old_trainer_tests used an old method of selection that did not weight the trees 
before selecting which ones were to be used for reproduction. 
 
Within an experimental results folder itself are several possible items: 

● A folder named “bots”: This folder contains all the text files for each robot in the 
population after the final round of mutation/crossover 

● A folder named “tree-output”: This folder contains PDFs of all the trees in the population 
at various different points in the training process. The number at the start of the pdf file’s 
name indicates which the generation the tree was from. 

● A folder named “pre_trained_bots”: If the experiment relied on pre-existing trees to 
initialize its population, all of the trees used for initialization will be in this folder.  

● A results text file: This file will contain several rows of testing parameters indicating all 
the different parameter sets this experiment used (there are multiple because parameters 
can be changed after a set number of generations). After each row of parameters is a row 
of results represented by a Json. The keys in this Json are generation numbers. The value 
is another dictionary where the key is the name of the robot and the value is that robot’s 
average score in that generation. At the end of the file is a summary of the results in 3 
columns. The first column indicates the generation, the second column represents the 
average score among all bots in that generation, the third column gives the average score 
of the best performing robot in that generation. 

 
The following table gives a summarizes the results of each of the non-buggy tests that used the 
final training method 



 
Test 
ID Test Name Motivation Conclusions 

1 

02-02-2021-17-
37-
47_new_trainer_fi
rst_run 

This was the first attempt with the 
new trainer. No parameter updates. 
Node penalties had not been 
implemented yet. No crossover Overall poor performance 

2 

02-02-2021-21-
59-
01_parameter_up
date_test 

First test where we updated 
parameters over the course of 
generations. Every ten generations 
the max_children variable was 
reduced and operator probability 
was decreased. No crossover 

Performed better than test 1but still 
resulted in massive trees 

3 

03-02-2021-11-
14-
33_new_trainer_
with_crossover 

Same as test 1 but also had 
mutation-percent set to 0.5 in 
order to test the viability of 
crossover 

Performed better than test 1 but had 
average results overall 

4 

03-02-2021-15-
29-
54_parameter_up
date_test_with_cr
ossover 

Same as test 2 but with mutation 
percent at 0.5 Similar results as test 2 

5 

03-02-2021-22-
26-
20_new_trainer_
with_node_penalt
ies 

Added node penalties that were 
used in most future tests. Same as 
test 1 but had a node penalty of 
0.025 in order to keep trees 
smaller 

Performed much better than test 1 but was 
only average overall 

6 

04-02-2021-04-
52-
52_parameter_up
date_test_with_no
de_penalties 

Same as test 2 but had a node 
penalty of 0.025 

Good performance that was not 
reproducible when individual tests were 
run. All the final trees were nearly 
identical. 

7 

04-02-2021-14-
12-
56_higher_cutoff 

Similar to test 6 but had a much 
more gradual decrease of operator 
probability and max children. 
Increased the number of games 
each bot played from 20 to 30. 
Increased the performance cutoff 
initially to try to encourage more 
diverse bots 

Performance was back to average levels, 
worse than in test 6. Bots had still 
converged by the end 

8 

05-02-2021-16-
31-
32_lower_sample
_rate 

Same idea as test 7 but used a 
lower high_performance_sample 
rate to try to make trees more 
diverse 

Performance was nearly the same as test 8. 
No diversity in final population 



9 

06-02-2021-12-
28-
03_periodic_shak
eups, 06-02-2 
 
21-12-50-
48_periodic_shak
eups_gradual_cut
offs, 07-02-2021-
14- 
 
37-
41_periodic_shak
eups_higher_cuto
ff 

Each of these three tests had an 
occasional generation with max 
mutation settings. The hope was 
that by scrambling up the trees 
every so often, they could escape 
local maximas 

The shake-ups only hurt overall 
performance 

10 
08-02-2021-11-
29-47_no_update 

Large mutation only test with no 
parameter updates, similar to test 1 
but with node penalties. Wanted to 
observe convergence behavior 
when maximum mutation was 
allowed the entire test run 

Poor performance, similar to test 1. The 
final population did have a lot of variety, 
however. Would indicate that convergence 
was caused by limiting either 
operator_probability or max_children 

11 

08-02-2021-23-
24-
19_high_crossove
r 

Similar to test 10 but had mutation 
percent set to 0.1 to test the 
viability of crossover. Node 
penalty was still 0.025 

Results were slightly better than test 10 but 
all the trees were extremely small, just a 
couple of nodes 

12 

09-02-2021-10-
51-
00_high_crossove
r_high_op 

Similar to test 11 but increased 
operator probability and increased 
mutation percent (to 0.2) in order 
to prevent all trees to becoming 
just a of couple nodes large 

Score was similar to test 10. Was, for the 
most part, unsuccessful at creating larger 
trees. Most trees involved just a root node. 
While there were some larger ones, they 
may have just been due to mutation in the 
last couple rounds. Node penalties 
probably need to be decreased 

13 

09-02-2021-20-
25-
57_no_win_bonus
_base_test 

Added negative constants that 
were in all future tests. Identical to 
test 6 except with a slightly lower 
node penalty and no win bonus. 
Win bonus might be skewing some 
of the results because if a tree 
randomly wins a couple of games 
it then it will have a 
disproportionate affect on how 
much that tree is selected for 
reproduction 

Overall performance was poor, as 
expected. It did seems like the best bots in, 
subsequent, test performed closer to their 
scores from training 



14 

10-02-2021-01-
29-
37_no_win_bonus
_param_update 

Identical to test 7 except with a 
slightly lower node penalty, no 
win bonus, and slightly less 
training of constants only. Purpose 
was to see how win bonus would 
make impact performance 

Performance did not seem to have 
improved, but the discrepancy between 
best bot score and average bot score on the 
final generation is smaller. The 
evolutionary does perform better relative to 
fast bots with no win bonus indicating that 
the evolutionary is okay at getting a decent 
amount of VP but bad at winning. The best 
bots, in subsequent tests, performed closer 
to their scores from training than bots did 
in other tests. Population still completely 
converged. 

15 

10-02-2021-11-
06-
39_param_update
_with_printing 

Very similar to test 7 but the 
high_performance_cutoff value 
wasn't changed and there is no win 
bonus. We printed the trees every 
3 generations to see where in the 
process the trees converged 

Bots performed slightly better than in test 
14. Trees started huge then immediately 
optimized by getting as small as possible. 
shows the initialization value should 
probably be smaller. Trees were not 
converged by gen 30, looked to be mostly 
converged around gen 40 and completely 
converged by the end 

16 

10-02-2021-21-
55-
58_smaller_init_o
perator_prob_grea
ter_cutoff 

Since all the robots start with 
massive trees which are then 
mostly trimmed to nothing due to 
the node penalty, the 
operator_probability on tree 
initialization was set to 0.55 
(originally 0.9) this new value was 
used for all future tests. Increased 
the higher_performance_cutoff 
after gen 30 to try to prevent 
convergence in later generations 

Decreasing the initialization probability 
caused trees to have a much better start 
when compared to previous tests. Things 
had mostly evened out by generation ten. 
Increasing the cutoff after gen 30 caused 
scores at the end to be much worse. There 
were 3 or 4 different tree structures at the 
end though meaning that it did succeed in 
preventing complete convergence 

17 

11-02-2021-11-
35-
39_smaller_init_c
rossover 

Wanted to see if crossover would 
be more viable with a lower node 
penalty and a smaller tree 
initialization value. Kept the 
operator probability during 
initialization at 55% and decreased 
the node_penalty to 0.01. 
mutation_rate was 0.2 and 
operator_probability was 0.6 

Poor performance. All trees were quickly 
reduced to almost just the root node 

18 

12-02-2021-00-
04-
11_higher_sample
_rate 

Wanted to try a test that selected 
almost exclusively from high 
performers and spent more time 
evolving trees at mid level depths. 
Mutation only 

While performance was not great it was 
better than some of the earlier results. 
Comparable to test 15 

19 
12-02-2021-00-
39-59_big_test 

Tried a test of 200 generations 
with no parameter updates to see if 
enough generations would be able 

Improvement slowed around generation 30 
and mostly stopped after generation 100. 
Did not perform that well 



to create a good tree structure by 
change. operator_probability was 
set to 45 

20 

14-02-2021-01-
12-
24_more_input_u
pdates 

It seemed like generations with a 
non-zero max_children count don't 
provide any benefit over just 
setting max_children to -1. So, the 
new tests now only have 3 
parameter updates. 60 gen with 
max_children = -1, 30 with 
max_children = 0, and the last ten 
with constants_only set to true 

Performance was better, similar to test 18. 
All of the final trees are pretty small and 
have very few constants. 

21 

15-02-2021-11-
35-
06_smaller_node_
penalty 

To address the issue of the trees 
being too small and lacking 
constants constants, I turned the 
node penalty way down to 0.005 

Performance was very bad until the 
evolving constants step which resulted in 
an improvement bringing it up to pretty 
much the score of test 20. Final result still 
didn't have constants though, showing the 
improvement at the end was just from tree 
convergence 

22 

16-02-2021-14-
26-
33_smart_bot_test 

Wanted to have an experiment 
where we trained against smart 
bots. Apart from the opponent it 
had the same parameters as test 20 

Good overall performance against smart 
bots. In additional tests the best tree from 
this experiment was able to beat smart bots 
more than 25% of the time. Still performed 
poorly against fast bots. 

23 

16-02-2021-14-
41-
39_pretrained_bot
s_test 

Same as test 20 except all robots 
were initialized using 8 of the best 
fast bots from earlier experiments 

Pretty good performance, better than test 
20. Still is not better than fast bots 
however. 

24 

17-02-2021-23-
33-
56_pretrained_bot
s_test_win_bonus 

Same as test 23 except it had a win 
bonus of ten 

Performance seemed slightly worse than 
test 23. 

25 

18-02-2021-11-
30-
44_pre_train_win
_bonus_fine_tuni
ng 

Took the best tree from test 24 and 
only trained the constant values Surprisingly, performance got worse. 

26 

19-02-2021-01-
53-
44_hand_made_b
ot_test 

Hand crafted a tree that had one of 
every input value added together. 
These input values were each 
multiplied by a constant. Then the 
constants were all trained for 150 
generations 

Not a viable approach. Performed worse 
than tests 23, 24, and 25 

 
 
 



V WinGameETA recording:  
 
Evolutionary bot has everything same as the Smart bot except that we extended the 
SOCBotBrain, SOCBotClient, and SOCPlayerTracker classes.  
 
Each bot possesses four PlayerTrackers that calculate winGameETA for its bot and three 
opponents. The CSV file recording the WinGameETA calculations from these PlayerTrackers 
was named after a simulation name originated in simulation.py where you can specify the 
number of games and types of bots to simulate.   
  
Simulation name passes into the Java side from simulation.py through SOCBotBrain, 
SOCBotClient, and SOCPlayerTracker classes. After accessing the simulation name, 
src/main/java/soc/robot/evolutionaryBot/EvolutionaryPrintWinETA.java creates a CSV file to 
record winGameETA for that simulation. EvolusionaryPrintETA.java then appends to the CSV 
file every time winGameETA is recalculated by an evolutionary robot, recording the following 
parameters: 
  
"GameName," "BotName," RoundNumber," "TurnNumber," "PlayerTrackerNumber," 
"winETA" 
  
Smart bot WinGameETA recording: 
  
SOCPlayerTracker.java has a method called recalcWinGameETA. At the end of the method, we 
record WinGameETA with the same procedure as the Evolutionary bot. This happens in the file: 
src/main/java/soc/robot/PrintWinETASmart.java 
 
Turning OFF and ON of WinGameETA recording:  
  
Change “false” to “true” in the line 86 of SOCPlayerTracker to turn on Smart Bot’s 
WinGameETA recording.  
  
RECORD_ETAS is a variable passed on from SOCPlayerTracker to EvoPlayerTracker, 
WinGameETA recording will be activated for Evolutionary bot as well. 
To record WinGameETA for only SmartBot, consider commenting recording code in 
EvoPlayerTracker. It is the same for Evolutionary bot. 
 
WinGameETA visualization:  
  
First, run the simulation.py. 
Then, evo_simulationName.CSV file is created in the python folder. 
Second, run the plot_etas.py. 
  
There are two different plotting option: 

- First: plot a single robot’s four playTracker’s WinGameETA predictions over an entire 
game. 

- Second: plot each robot’s winGameETA predictions for a single robot over the course of 



a game. 
  
To store WinGameETA of each playerTracker of each bot for every turn, we loop through the 
CSV one time to create the dictionary of dictionaries of lists. Then with a second loop over the 
CSV, we put the values into the data structure. The data structure was later used by the Python 
visualization library. 
 
NOTE: matplotlib must be downloaded in order to generate the charts: 
https://matplotlib.org/downloads.html 
 
VI Tree printing instructions 
 
print_tree.py  

- This file generates a pdf image of a bot’s tree given a bot’s text file 
- Graphviz, a graph visualization package that may need to be installed: 

- https://graphviz.org/ 
- https://pypi.org/project/graphviz 

- To use: 
1. Make sure print_tree.py is in the same directory as the file you want to use to pass 

in a bot’s text file 
2. At the top of this file, import print_tree.py (“import print_tree”) 
3. To generate a pdf image of a bot’s text file, call print_tree.main() 

a. print_tree.main() has 4 parameters 
i. simulation name 

ii. bot’s text file 
iii. generation number 
iv. boolean to open the pdf image when it is generated (defaults to 

false)  
b. example 1: print_tree.main(“sim1”, “bot1.txt”, “1”) 
c. example 2: print_tree.main(“s10”, “bot2.txt”, “g10”, True) 
d. example output: sim1-bot1-1.pdf 

4. You can also print trees directly from print_tree.py, by calling main() directly in 
the file with the appropriate parameters 

- Generated images are added to a folder named “tree-output”  
 
Sample tree file input: 

 
 
 
 
 
 
 
 
 

  



Sample print tree output: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
VII Genetic Tree Inputs 
 
Time To Longest Road 

- The estimated time to own the longest road 
- getLongestRoadETA(), SOCPlayerTracker 
-  

Roads To Go 
- The number of roads to build to obtain the longest road 
- getRoadsToGo(), SOCPlayerTracker 

 
Knights To Go 

- The number of knights needed to obtain the largest army 
- getKnightsToBuy(), SOCPlayerTracker 

 
Largest Army ETA 

- The estimated time to obtain the largest army 
- getLargestArmyETA(), SOCPlayerTracker 

 
Resource Income 

- The number of different ways a player can obtain a resource. For a given resource, it is 
the number of that resource you get summed over all 36 possible dice rolls. 

- getResourceIncome(resource), EvolutionaryPlayerTracker 
- Function takes in a resource as a parameter, or “total” for all resource income combined 

- Resources: brick, log, ore, sheep, wheat 
 
Current Resources 

- The amount of a resource that a player owns 



- getResourceCount(resource), EvolutionaryPlayerTracker 
- Function takes in a resource as a parameter: brick, log, ore, sheep, wheat 

 
Total Resources: 

- The total amount of resources that a player owns 
- getTotalResources(), EvolutionaryPlayerTracker 

 
Current VP 

- The current number of victory points that a player has 
- getCurrentVP(), EvolutionaryPlayerTracker 

 
Port Count 

- The number of ports a player has access to 
- getPortCount(), EvolutionaryPlayerTracker 

 
Dev Card Count 

- The number of development cards a player has 
- getDevCardCount(), EvolutionaryPlayerTracker 

 
Build Location Count 

- The total number of remaining possible settlement locations 
- getBuildLocationCount(), EvolutionaryPlayerTracker 

 
Ready Build Spot Count 

- The total number of playable settlement locations in the next turn 
- getReadyBuildSpotCount(), EvolutionaryPlayerTracker 

 
Build ETA’s 

- The estimated time to build something 
- getBuildETA(type), EvolutionaryPlayerTracker 
- Type parameters: road, settlement, city, dev card 

 
 
VIII Instructions for building Jsettlers and running experiments 
 
Note that the “Readme.md” file in the base directory and the “Readme.developer.md” file in the 
“doc” folder are great places to look if you are confused or want more details regarding how 
Jsettlers works and what its parameters are. There are several different ways you can run jsettlers 
games. After reading the instructions for building jsettlers, I recommend you look at all the 
different methods before you start with one.  
 
Building Jsettlers: 
 

1. Download IntelliJ and clone/open the repository. I recommend opening the “python” 
folder with PyCharm as well but if you want you can use IntelliJ for the entire project 
(this would require you to configure a python interpreter in IntelliJ). You’re free to use 



other IDEs as well but certain steps in this guide may not be applicable to other 
environments 

2. The project uses gradle to build. This should be installed by default. The project may 
automatically connect to gradle on start-up or you may see a pop-up asking you to 
connect to gradle (if you do, select yes). If your project didn’t connect to gradle, try 
closing it and reopening it. If that doesn’t work you’ll have to try troubleshooting. Here is 
the IntelliJ documentation on gradle which is a good place to start. When this is done you 
should have an automatically generated gradle wrapper file in your root “gradlew” 

a. You will know you are successfully connected to gradle if you have a sidebar 
on the right hand side of your screen that says gradle. Clicking this will open 
the gradle tool window. You can also open the gradle tool window via 
“View→Tool Windows→Gradle”. 

3. To build the project, open the gradle tool window, open the drop down, and select 
“Tasks→build→build”. You’ll have to build anytime you edit the java code. I 
recommend saving this as a run configuration. While you’re building it may say 
some tests are failing, just ignore these warnings. After building you should have a 
new, auto generated “build” folder in your root directory.  

a. Optionally, you should now be able to run Jsettlers via the gradle tool 
window via “Tasks→application→run” 

4. If you want to run simulations with the evolutionary robot, you must copy and paste the 
file named “gson.jar” (found in the root) into the folder with the other jar files 
“build/libs/” 

 
Running robot only games (default method): 
 

- Note: I generally don’t recommend running games this way. The default method of 
running robot only games is very bad and gives you very little control over which robots 
are in which games. 
 

1. Ensure that all the steps in the building Jsettlers section succeeded 
2. Check the Jsserver.properties file in the root directory. These are all command line 

arguments that the jsettler server uses on start-up. For more details regarding these 
parameters and other unused parameters, refer to 
“src/main/bin/jsserver.properties.sample”. To run a single robot only game, uncomment 
the line that reads “jsettlers.bots.botgames.total=1”. (the other parameters are all fine). 

a. If you want the server to shut down when the bot only games have finished, set 
the line that reads “jsettlers.bots.botgames.shutdown” to be equal to “Y”  

3. Right click on and run the jsettlers server jar file which should be in the automatically 
generated build folder: “build/libs/JSettlersServer-2.4.10.jar”. I recommend setting this as 
a run configuration. 

 
Running robot only games from an input file: 
 

1. In the Jserver.properties file, uncomment the line that reads 
“jsettlers.bots.botgames.total=input.csv” 



a. Optionally, if you want to see the results of the game, uncomment the line that 
reads “jsettlers.bots.botgames.total=input.csv,test_results.txt” 

b. Note that input.csv and test_results.txt are just default file names, you can use 
whatever file names you want as long as they correspond to actual files that have 
already been created 

2. Set up your input.csv file. There is a sample file in the base directory but feel free to edit 
it. Note that input files must be very precise and have no extra spaces or blank lines. 
Input files have the following format: 

a. The first row is where you declare all of the built-in jsettlers robots separated by 
commas. Note that if a robot’s name starts with “s” it will be a smart bot and if it 
starts with “f” it will be a fast bot. 

b. The second row is where you declare third party robots. Every two indices in this 
row are part of a pair where the first value indicates the name of the third party 
robot and the second entry indicates the location of that robot’s client in the code. 
Note that if you want to use evolutionary robots, the evolutionary robots name’s 
must correspond to existing text files (without the .txt extension) that have a 
robots encoded genetic tree. 

i. If you don’t want to include third party bots. Leave this line blank 
c. All subsequent lines represent an individual robot only game. Each of these lines 

will have four bot names (among those that you specified in lines 1 and 2) 
separated by commas 

3. Optionally, set up the result file. If you want to record the results of the game be sure to 
have initialized an empty text file with a name that matches the value you passed into the 
jsserver.properties file. 

4. Run the jsserver.jar file: “build/libs/JSettlersServer-2.4.10.jar” 
 
Important Notes:  
 
The python folder contains files that run tests and perform experiments automatically, if you 
want these files to work properly, be sure to mind the following: 

● If you want to run simulations with the evolutionary robot and you haven’t already done 
so, copy and paste the file named “gson.jar” (found in the root) into the folder with the 
other jar files “build/libs/” 

● Running simulations and experiments via the python code: The python code has a lot of 
functions that automate the process of creating input files and running experiments. In 
order for these functions to work, your path to the jsettlers jar files must match ours. So, 
the root directory must contain a “python” folder and a “build” folder. All the python 
files should be in the python folder. The build folder should contain a folder called “libs” 
that has all the jar files: 

○ Root 
■ python 

● [Python_file_1] 
● [Python_file_2] 
● [etc.].. 

■ build 
● libs 



○ gson.jar 
○ JSettlers-2.4.10.jar 
○ JSettlersServer-2.4.10.jar 

 
Running the simulation.py file 
 
The python code has a built in class that automatically generates input files, runs simulations, 
and parses results files: 

1. Navigate to python/simulation.py 
2. Create your simulation object in the main method. All the parameters are explained at the 

top of the class. Note that any evolutionary bots you include must have their text files 
initialized with their trees.  

a. If you only want to run games with jsettler robots, set “no_evo” to true when you 
create your simulation object 

b. To initialize evolutionary robots, navigate to the python/test_set_up.py file. In the 
main function run the “initialize_new_bot()” method passing in whatever name 
you want for the new evolutionary robot. Note that this file is set up so 1 
evolutionary robot will play against 3 built in robots. It does not support 
evolutionary robots playing each other 

3. Run the simulate method on your simulation object 
a. If you want to see the results, be sure to print out the result of the four get 

methods after simulation is ran 
4. One important note is that if you want to rerun a simulation with the same name, be sure 

that the input and results file from the last run are deleted 
 
Running Evolutionary robot experiments: 
 

1. There are a couple of dependencies that must be installed for experiments to work. 
a. Time outs: timeout and retry logic will work by default on Linux. The “time_out” 

parameter in “python/simulation.py” has instructions for how to set up timeouts 
on mac. 

b. Print tree: If you wish to have the experiment print the population of trees as it 
runs, you will need to have all the dependencies for the “python/print_tree” file. 
Refer to section 6 for details. I recommend you test this out before trying to print 
trees in the experiment. 

2. Set up a Json configuration file with all the parameters of your experiment. 
“python/trainer_config_sample.json” provides the sample format these configuration files 
use. To summarize some of the different components of it: 

- “Tree-depth” is the max depth that evolutionary trees are allowed to have. 
NOTE: changing this value is just for bookkeeping purposes and does not 
actually change the tree depth. To change the tree depth, navigate to 
“src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotBrain.java” and set the 
instance variable “MAX_DEPTH” to whatever integer you want 

- “Training_runs” is a list of different experiments. Each experiment is a json and 
they will be automatically run one after the other.  

- “name” is the name of the experiment 



- “bot_count” is the number of evolutionary robots you want in the experiment 
- “print_rate” is how frequently the generation of genetic trees is printed. If you 

don’t want the trees printed automatically, set this to 0 
- “initial_bots” is a list of pre-existing bot files used to initialize your new robot 

files. If you want to start with new, random evolutionary robots, leave this empty 
- “training_sessions” is a list of dictionaries where each dictionary contains a set of 

training parameters. This allows you to modify the parameters of an experiment in 
the middle of its run. E.g. you could do 10 generations with one set of parameters 
and then train for another 20 generations with a different set. All of these 
parameters come directly from the evolutionary bot trainer so refer to the Trainer 
section or the “python/trainer” file for reference. 

- One note is that the number of games done in a generation is the 
games_per_bot * bots_per_sim. Jsettlers will run out of memory if too 
many games are running simultaneously (I’ve found that it's best to keep 
the number of fast bot games running simultaneously under 100 and the 
number of smart bot games under 30). To make sure you don’t have too 
many games running at once, you can set the bots_per_sim value to 
whatever you want. Changing bots_per_sim will have no effect on the 
results of the experiment. 

3. Go to “python/trainer_automator.py” and in the main method call the run_experiments 
function while passing in the path of your configuration file 

4. After running, you should have a new folder for each experiment that has the results. See 
the experimental results for details regarding the contents of these folders 
 

IX Summary the Repository: 
 
Top level directory: 

● “Experimental-Results” directory: Contains the results of all of the Jsettlers simulations 
we ran. See section 4 for more information. 

● “python” directory: Contains all of the high-level code for the evolutionary algorithm (i.e. 
all the code that isn’t directly part of the Catan game). This includes code for running 
simulations, different trainers, files for analyzing/visualizing results and configuration 
files. 

● “jserver.properties”: parameters for the jsettlers server. See the instructions for relevant 
parameters and refer to “src/main/bin/jsserver.properties.sample” for a sample.  

● “Input.csv”: a sample input file used to initialize bot games. See the “running robot only 
games from an input file” part of section 8 for details. 

● “deploy.sh”: A script that uploads all the necessary files to the Carleton cs servers. 
Preserves the necessary file path outlined in the instructions. 

● “gson.jar” file: A jar file that the evolutionary bot uses to write its tree to a file and load 
in its tree from a file. Must be copied and pasted into the same directory as the other jar 
files. 

● “src” directory: contains all of the actual settlers of catan code. 



● “doc” directory: more documentation by the jsettlers creators. 
● “target” directory: jsettlers directory used by gradle. 
● “Evolutionary_Bot.txt” file: a sample evolutionary robot text file. 
● “Readme.md” file: Instructions written by jsettlers creator. Is not up to date with the new 

additions to the code base. 
● “test_results.txt” a blank file you can use to write game results to. 
● “build.gradle” file: handles building the project. 
● “.gitignore” file: Keep track of files you don’t want in version control 

 
 
Additions to Jsettlers code: 

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryPrintWinETA.java: Helper file for 
printing out the win ETA for evolutionary bots. See section 5 for more details 

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotClient.java: Extends 
SOCRobotCleint. Handles the initialization of new Evolutionary robots. Creates the 
evolutionaryBotBrain. 

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryPlayerTracker.java: Extends 
SOCPlayerTracker: Overrides the recalcWinGameETA method with the evolutionary 
tree strategy. Has all the different methods for getting tree input values (see section 7 for 
more details) 

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotBrain.java: Extends 
SOCBotBrain. Primary logic for the evolutionary robot. Keeps track of all the different 
constants, tree input values, and operators used by genetic trees. Has a GeneticTree 
subclass which is used to recalculate the winGameETA. The geneticTree subclass also 
has subclasses for TreeNodes and TreeInputValues. Logic for initialization, mutation, 
and crossover are also part of the Genetic Tree and are called via the main method (see 
section 3 for more information). Genetic trees are either randomly generated or read in 
from an evolutionary bot’s text file. EvolutionaryBotBrain also overrides the relevant 
methods from SOCBotBrain in order to ensure that it is using the Evolutionary player 
trackers but also following the same logic as smart bots. See comments in the code for 
more details. 

 
Modified files in the Jsettlers code: 

● src/main/java/soc/game/SOCGame.java: made some instance variables public 
● src/main/java/soc/game/SOCGameOption.java: Some of the unused game options were 

causing the client to crash when trying to initialize a bots only game while connected to 
the server. These are now excluded from possible game options. 

● src/main/java/soc/game/SOCPlayer.java: potentialSettlements was made public. 
● src/main/java/soc/robot/SOCBuildingSpeedEstimate.java: some methods were made 

public. 



● src/main/java/soc/robot/SOCPlayerTracker.java: some methods were made public and the 
getSOCPlayerTrackerCopy method was modified to be able to make new Evolutionary 
Player Trackers. Optional Win ETA printing for smart bots was added as well. 

● src/main/java/soc/robot/SOCRobotBrain.java: Gson was imported, a geneticTree instance 
variable was created, ourPlayerName was made public. 

● src/main/java/soc/robot/SOCRobotClient.java: an instance variable was created for the 
simulation name. 

● src/main/java/soc/robot/SOCRobotDM.java: getETABonus was made public. 
● src/main/java/soc/robot/PrintWinETASmart.java: Helper file for printing out the win 

ETA for smart bots. See section 5 for more details 
● src/main/java/soc/server/SOCGameHandler.java: Printing game results to a file was 

added (lines 2719 - 2741). 
● src/main/java/soc/server/SOCLocalRobotClient.java: Created a new client constructor 

that lets the simulation name be passed to the robot clients. 
● src/main/java/soc/server/SOCServer.java: Implemented initialization bots via an input 

csv file. See section 8 for instructions on how the input csv works. Most of the relevant 
new code is in if statements that start “if (GAMES_FROM_FILE)”. Some warnings were 
also commented out to allow the evolutionary bot to be playable through the client. 

● src/main/java/soc/server/SOCServerMessageHandler.java: Some warnings were 
commented out to allow the evolutionary bot to be playable through the client. 

● src/main/java/soc/util/SOCRobotParameters.java: setStrategyType was made public 
● src/test/java/soctest/util/TestGameList.java: Some warnings were commented out to 

allow the evolutionary bot to be playable through the client. 
 
 
“python” directory: 

● “old_trainer_stuff” python package: Contains files relating to a deprecated robot training 
method. 

● analysis.py: A script for providing quick analyzing the results dictionary that is output 
from training.  

● jsserver.properties: same as the properties jserver.properties file in the top level directory 
but the botgames.total left blank because we declare this explicitly in simulation.py. 

● plot_etas.py: File that plots winETAs for robots. See section 5 for details. 
● print_tree.py: File that visualizes tree text files. See section 6 for details.  
● simulation.py: Automatically writes input files, runs Catan simulations, and analyzes 

results. See comments in the file for details on parameters and see the simulation.py notes 
in section 8 for instructions. 

● test_set_up.py: Contains calls to the main method of the EvolutionaryBotBrain used for 
initializing evolutionary robots, performing crossover, and performing mutation.  

● timer.py: Tests how long different simulations take. 



● trainer.py: The training algorithm. See section 2 for more details. 
● trainer_automator.py: Reads in a json configuration file and automatically queues and 

packages experiments. See the experiment part of section 8 for details. 
● trainer_config_sample.json: a sample configuration file used by the trainer_automator. 

See the experiment part of section 8 for details 


