
Evolvers of Catan Technical Report

Bat-Orgil Batjargal, Alvin Bierley, Andrew Fitch, and Daniel Kleber

I JSettlers

JSettlers is a Java program that consists of Settler of Catan (SOC) playing bots and framework
for other SOC-playing AIs to train. You can run the program locally from a machine of your
choice. Also, it includes graphics enabling humans to play and visualize the games that bots are
playing.

Because JSettlers is openly available to the public, it allows AI creators to compare their
performances, track their improvement as a community and build a census around what works in
creating SOC-playing AI, enabling replicability of the previous research. In short, JSettlers
empowers the game AI community to advance itself and develop better AIs.

Current JSettlers provides two types of Heuristic bots to play with: fast and smart. Heuristic
means they follow rules of thumb defined by humans to play SOC to a certain degree in their
models.

Smart bot is mostly a better player than the Fast bot. Smart bot wins 30% of the time when it
plays SOC with three Fast bots. Fast bot is named fast because it has a heuristic algorithm that is
simpler and faster than that of the Smart bot. Smart bot is named smart because it was designed
to win the Fast bot therefore smarter than the Fast bot that JSettlers originally had I assume.

In general, the Fast and Smart bots systematically analyze the game state, future dice
probabilities, possible actions by itself and its opponents, and more to answer the question:
which choice would increase its chance of winning?

We wanted to create an AI that can play against the Smart Bot and win. We extended the Smart
bot.

The strategy of the smart bot:

Let’s take an example. On the SOC board, a Smart bot has four roads in red and a settlement in
pink. There are also possible actions to take. In yellow, A and B are options of building a road
whereas C is an option to build another settlement.

In order to decide the next move, the Smart bot simulates simplified games for A, B, and C
choices and calculates a quantity called WinGameETA. WinGameETA is an expected number of
turns required for winning after the choice is made. In the simplified simulations, the smart
heuristic algorithm considers 6 scenarios in parallel with “a while loop” which includes,
finishing the game with “2 settlements (including necessary roads' ETA)”, “2 cities”, “1 city, 1
settlement (+roads)”,”1 settlement (+ roads), 1 city”, “Buy enough cards for Largest Army”, and
“Build enough roads for Longest Road.” When Smart bot simulates a simplified game for the
choices A, B, and C, the simulation runs possible game scenarios till one of them reach 10
victory points first in a while loop. Simulation of a choice returns WinGameETA as the number
of turns that were required for the best scenario.

As a bigger picture, observe that each choice gets a simplified game simulation. Each simulation
further considers possible actions to take according to the six scenarios. Then finally, the
expected WinGameETA of each choice is considered by Smart bot’s overarching heuristic
algorithm.

Simply, Smart bot could choose the move with the least WinGameETA. But Smart bot’s
algorithm is more complex than that considering how its choice impacts WinGameETA of itself
and its opponents. The image below shows the WinGameETA expectation a Smart bot had at the
end of each turn for itself in blue and for its opponents in red, orange and green.

This chart shows all the win ETA predictions made by a single smart bot for itself and each of its
opponents over the course of a single game of Catan. The X-axis gives the turn number and the
Y-axis is the win ETA prediction in turns:

The fact that WinGameETA calculation is requested in every turn shows that it is a crucial
component of the Smart Bot’s algorithm. If we could create a WinGameETA calculator for
Smart bot that is better than its current methodology, performance of Smart bot should improve.

We chose genetic programming to evolve one polynomial that calculates WinGameETA
throughout the game because

● we didn't see in the scholarship the use of evolutionary AI with genetic programming in
building SOC-playing AI;

● a polynomial WinGameETA calculation had an advantage of being faster than Smart
bot’s current approach; and

● polynomial WinGameETA calculations are easier to interpret than Deep Neural Neutral
approaches we found in the literature.

Our Evolutionary AI replaces JSettler’s WinGameETA calculator method.

II Trainer Walkthrough

The most interesting and complicated part of the Trainer class (in python/trainer.py) is the train
function. This function takes the following input parameters:

● mutation_percent: A value between 0 and 1, which determines what proportion of the
bots in each generation should be generated using mutation. The rest of the bots will be
generated using crossover.

● generations: A positive integer, which determines how many repetitions of the general
training structure the bots will go through.

● games_per_bot: A positive integer, which determines how many games each bot will
play per generation to determine its fitness score.

● fast_count: 0, 1, 2, or 3, the number of fast bots which each evolutionary bot will be
playing against. Each will have 3 total opponents, and any which are not fast will be
smart.

● bots_per_sim: A positive integer, which sets how many bots will be in each simulation.
(Excess bots will be in a non-full simulation.) We recommend roughly 100 for fully fast
bot games and roughly 30-40 for smart bot games. If this is too large, games may begin
to fail.

● operator_probability: String form of a number between 0 and 100, which sets the percent
chance that a mutated node will become an operator, assuming it isn’t at the maximum
depth.

● max_children: Integer, which sets the maximum total descendent count a node can have
before we exclude it from the pool of possible mutations. If this is set to -1, there is no
such restriction.

● constants_only: Boolean, which, if true, forces all mutations to be changes to constants
rather than altering or producing anything else.

It converts one set of bot trees and their associated fitness scores into a new set of bot trees, using
the initial set as a basis, in the following fashion.

The first several lines of the train function are set up, copying variables around (lines 93-110).
The function then proceeds to do the actual training, looping through it a number of times equal
to the desired number of generations. Each generation, the trainer first sets up the simulations
(lines 120-135), then runs them and records the scores (lines 137-146). Each of these simulations
holds several instances of JSettlers, each containing one copy of one of the evolutionary bots in
addition to some number of fast bots and some number of smart bots. There is one simulation for
each bots_per_sim evolutionary bots. The number of fast bots is equal to the parameter
fast_count. All games will be 4 players, with any remaining players being smart bots. Each
JSettlers instance runs a number of games equal to the parameter games_per_bot. The
simulations then average the scores of each bot over those games, adding an amount equal to the
win_bonus parameter to any games in which the bot won, and uses that mean as the bot’s fitness.
In the final run or if the generation is a generation where it should print, it prints out all the bots
(lines 149-154). After that, the train function begins the actual training part.

The training begins by dividing the bots into two groups, the high performers and the low
performers (lines 157-167). It does this by taking all the bots, calculating the total fitness, and
then multiplying that by the performance cutoff, which was input as the parameter
performance_cutoff (lines 157-160). The goal is to have some fraction of the total fitness
classified as high performers, with the fraction set by the caller, so this allows the function to
know how much total fitness it should put in the high performer bin. Having done that, it sorts
the bots by fitness (line 161) and goes through them one by one, putting trees into the high
performer list until their total fitness has at least reached the target value (lines 163-165). The
trees up to that one become high performers (line 166), while the rest are low performers (line
167).

Having done this, the fitness scores now need to be converted into weights. To do this, they are
normalized (lines 170-173), by calculating the total fitness among high and low performers, then
dividing the high performer fitnesses by the high performer total (line 172) and doing the
equivalent for the low performers (line 173). This will be useful later.

The code now computes how many crossovers and how many mutations to do (lines 176-184).
This is reasonably straightforward, multiplying the total number of bots to produce by the
mutation_percent parameter to get the mutation count and letting the rest be crossovers (lines
176-177). Notable is that crossovers produce two trees, so if there are an odd number of
crossovers, one mutation is replaced with a crossover, unless there are zero mutations, in which
case one crossover is instead replaced by a mutation (lines 178-184).

The next step is to produce some storage space, as the trainer will need to use the files containing
the current bots to hold the next generation, and the parent bots need to live somewhere in the
meantime. To do this, the code first copies over the pointers to the files and the fitnesses,
separating them from the original values in gen_results (lines 188-189), then actually copies the
files, first of the high performers (lines 190-194) and then of the low (lines 195-199). The copies
are done by a copyfile call, and the names of the prior files are retained in gen_resilts, where they
will be input into the next generation’s call.

Finally, the trainer calls the actual mutation (lines 202-211) and crossover (lines 214-229). The
mutation and crossover operations are done separately (see section 3 for details), only being
called by the trainer (lines 211, 229). The trainer’s job here is to determine which bots to
mutate/crossover from and where to put the results. Selecting of bots is done by two weighted
random selections, first picking whether to use a high or low performer with weights
high_performer_sample_rate and 1-that, then picking a bot within the selected group with
weights equal to the normalized fitnesses (mutation: lines 204-209, crossover: lines 215-226).
Crossover, of course, does this twice, once for each parent. As gen_results is no longer being
used to store parents, after the prior storage space steps, the code places the resultant trees in the
next tree in gen_results (mutation: line 210, crossover: lines 227-228). With that, the creation of
the next generation of bots is complete.

Lastly, the trainer has to clean up all the files it created along the way. As it has the names of all
those redundant files stored in the relevant lists, this simply requires going through those lists
and removing the files they reference (lines 232-237). After this, the trainer proceeds to the next
generation, and repeats (returning to line 111).

III Training Operations (Initialization, Mutation, Crossover)

Some of the operators used by the training method were programmed in the jsettlers code itself.
The calls to the jsettlers code are in the file python/test_set_up.py and the call main methods in
src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotBrain.java. We set it up this way
because it allowed us to reuse resources from the Evolutionary AI tree simplify the code. Having
these operations in Java also let us take advantage of the gson library which allows you to read in
a text file to a Java class. This made it so we wouldn’t have to parse evolutionary tree files
manually. One important thing to node is that each genetic parse tree has a maximum depth
allowed to prevent trees from growing infinitely large

Mutation

Mutation takes 5 parameters:

1. The name of the bot to mutate (must correspond to an existing bot file)
2. The name of the bot after mutation
3. The probability that the mutated node becomes an operator (a string from 0 - 100)
4. The maximum number of descendents the mutated node is allowed to have (String)
5. Whether or not only constant value nodes can be considered for mutation (“true” or

“false”)

The mutation method starts on line 972 of Evolutionary bot brain where it reads all the
parameters in (973 - 977), then reads in the bot tree (978 - 979). Then it calls mutate on the bot
tree (980) before printing to the new file (981)

The tree mutation method called in line 980 is declared on line 662. This method gets a random
node from the tree that satisfies the max_children and constants only_constraint (line 666). If no
node satisfies the conditions then the function returns and the tree is not mutated (667 - 669). The
node to be mutated is then given a pointer to the genetic tree itself (670). A boolean expression is

evaluated to determine whether or not the node to be mutated meets the conditions to be a
constant value (672) before the mutation method on the node is called on line 673 passing in the
operator probability and whether or not the node can be a constant. A node is a constant if and
only if the following conditions are met:

● It is a leaf node
● It is a right child
● Its parent is a multiplication operator

The node mutation method is declared on line 271. This method starts by randomly determining
whether or not the mutated node will be an input node or an operator node weighted by the
operator probability. If the node is assigned to be an input node, if canBeConstant is set to True
we assign the node to be a random constant, otherwise we assign the node to be a random input
node and finish. If the node is assigned to be an operator, we assign it a random operation then
create two random children for it. The same operator probability a parent used is also used in
determining whether or not the children are operators or inputs. If one of the random child nodes
is an operator then that node also gets two random children. This process repeats until all nodes
are inputs. Throughout this whole process the max depth of each node is tracked and if any
node’s children would exceed this limit, then that node is automatically set to be either input or
constant type.

Initialization

Initialization takes a single parameter: The name of the new robot you are creating. It starts on
line 967 of evolutionary bot brain where it initializes a new bot brain in line 969 before creating
a new GeneticTree in line 970. In the genetic tree, all the input values and operations are set up
(519 and 520). Afterwards the root of the new tree is assigned to some random input. This node
doesn’t matter, however, because in the very next step (line 522) this node is mutated with an
operator probability of 55%. After mutation finishes the tree is printed to a file (line 523). To
summarize, a new tree is created by creating a tree with one node in then mutating that node.

Crossover

Crossover takes 5 parameters:

1. The name of the first bot to crossover (must correspond to an existing bot file)
2. The name of the second bot to crossover (must correspond to an existing bot file)
3. The name of bot 1 after crossover
4. The name of bot 2 after crossover

Crossover starts in line 983 of the EvolutionaryBotBrain. It starts by reading in the parameters
and then initializing the two bot trees before calling crossover by passing in the 2 trees (line 992)
and printing the new trees to a file.

The crossover method itself is declared on line 860. First, it determines which of the two trees to
get the random node from first (863 - 870). Then, we perform depth first search on the first tree,
creating a list with each node, its depth, its branch depth (the depth of the node’s subtree - the
node's depth), and its parent (873). Afterwards, if the node is just a root, we return without doing

crossover (875). Otherwise we choose a random node from the list to be the first candidate from
crossover. Call this node S1 (selected node 1).

Next we get a node from the second tree for crossover. Similar to the first tree, we create a list of
candidate nodes using the second tree’s nodes with each node’s parent, depth, and branch depth
(880). One difference is that a node from tree 2 is only added to the candidate list if that node
meets the following conditions:

● Selected node 1 depth + tree 2 node branch depth < max depth allowed
● Selected node branch depth + tree 2 depth < max depth allowed

These conditions ensure that after crossover both new trees will not be violating the max depth
rule. Once we have the candidate list from tree 2 we select a random node from it in line 884. In
lines 886-896 we actually do the crossover, by changing the pointers of the selected node’s
parents while also noting if the selected nodes are left or right children. Lastly, we have to
recalculate the depths of all nodes in both trees (lines 899 and 900).

IV Experimental Results

The results from all of our experiments are found in a folder titled “Experimental-Results”.
Within this directory each folder contains the results of one experiment and follows the naming
convention [date]_[test-name]. In addition to these results folders there are two other folders
titled “bad_tests” and “old_trainer_tests”. The bad_tests folder contains results from experiments
that ran when there was a major bug in the Evolutionary robot logic that made it use more of the
smart robots logic. Old_trainer_tests used an old method of selection that did not weight the trees
before selecting which ones were to be used for reproduction.

Within an experimental results folder itself are several possible items:

● A folder named “bots”: This folder contains all the text files for each robot in the
population after the final round of mutation/crossover

● A folder named “tree-output”: This folder contains PDFs of all the trees in the population
at various different points in the training process. The number at the start of the pdf file’s
name indicates which the generation the tree was from.

● A folder named “pre_trained_bots”: If the experiment relied on pre-existing trees to
initialize its population, all of the trees used for initialization will be in this folder.

● A results text file: This file will contain several rows of testing parameters indicating all
the different parameter sets this experiment used (there are multiple because parameters
can be changed after a set number of generations). After each row of parameters is a row
of results represented by a Json. The keys in this Json are generation numbers. The value
is another dictionary where the key is the name of the robot and the value is that robot’s
average score in that generation. At the end of the file is a summary of the results in 3
columns. The first column indicates the generation, the second column represents the
average score among all bots in that generation, the third column gives the average score
of the best performing robot in that generation.

The following table gives a summarizes the results of each of the non-buggy tests that used the
final training method

Test
ID Test Name Motivation Conclusions

1

02-02-2021-17-
37-
47_new_trainer_fi
rst_run

This was the first attempt with the
new trainer. No parameter updates.
Node penalties had not been
implemented yet. No crossover Overall poor performance

2

02-02-2021-21-
59-
01_parameter_up
date_test

First test where we updated
parameters over the course of
generations. Every ten generations
the max_children variable was
reduced and operator probability
was decreased. No crossover

Performed better than test 1but still
resulted in massive trees

3

03-02-2021-11-
14-
33_new_trainer_
with_crossover

Same as test 1 but also had
mutation-percent set to 0.5 in
order to test the viability of
crossover

Performed better than test 1 but had
average results overall

4

03-02-2021-15-
29-
54_parameter_up
date_test_with_cr
ossover

Same as test 2 but with mutation
percent at 0.5 Similar results as test 2

5

03-02-2021-22-
26-
20_new_trainer_
with_node_penalt
ies

Added node penalties that were
used in most future tests. Same as
test 1 but had a node penalty of
0.025 in order to keep trees
smaller

Performed much better than test 1 but was
only average overall

6

04-02-2021-04-
52-
52_parameter_up
date_test_with_no
de_penalties

Same as test 2 but had a node
penalty of 0.025

Good performance that was not
reproducible when individual tests were
run. All the final trees were nearly
identical.

7

04-02-2021-14-
12-
56_higher_cutoff

Similar to test 6 but had a much
more gradual decrease of operator
probability and max children.
Increased the number of games
each bot played from 20 to 30.
Increased the performance cutoff
initially to try to encourage more
diverse bots

Performance was back to average levels,
worse than in test 6. Bots had still
converged by the end

8

05-02-2021-16-
31-
32_lower_sample
_rate

Same idea as test 7 but used a
lower high_performance_sample
rate to try to make trees more
diverse

Performance was nearly the same as test 8.
No diversity in final population

9

06-02-2021-12-
28-
03_periodic_shak
eups, 06-02-2

21-12-50-
48_periodic_shak
eups_gradual_cut
offs, 07-02-2021-
14-

37-
41_periodic_shak
eups_higher_cuto
ff

Each of these three tests had an
occasional generation with max
mutation settings. The hope was
that by scrambling up the trees
every so often, they could escape
local maximas

The shake-ups only hurt overall
performance

10
08-02-2021-11-
29-47_no_update

Large mutation only test with no
parameter updates, similar to test 1
but with node penalties. Wanted to
observe convergence behavior
when maximum mutation was
allowed the entire test run

Poor performance, similar to test 1. The
final population did have a lot of variety,
however. Would indicate that convergence
was caused by limiting either
operator_probability or max_children

11

08-02-2021-23-
24-
19_high_crossove
r

Similar to test 10 but had mutation
percent set to 0.1 to test the
viability of crossover. Node
penalty was still 0.025

Results were slightly better than test 10 but
all the trees were extremely small, just a
couple of nodes

12

09-02-2021-10-
51-
00_high_crossove
r_high_op

Similar to test 11 but increased
operator probability and increased
mutation percent (to 0.2) in order
to prevent all trees to becoming
just a of couple nodes large

Score was similar to test 10. Was, for the
most part, unsuccessful at creating larger
trees. Most trees involved just a root node.
While there were some larger ones, they
may have just been due to mutation in the
last couple rounds. Node penalties
probably need to be decreased

13

09-02-2021-20-
25-
57_no_win_bonus
_base_test

Added negative constants that
were in all future tests. Identical to
test 6 except with a slightly lower
node penalty and no win bonus.
Win bonus might be skewing some
of the results because if a tree
randomly wins a couple of games
it then it will have a
disproportionate affect on how
much that tree is selected for
reproduction

Overall performance was poor, as
expected. It did seems like the best bots in,
subsequent, test performed closer to their
scores from training

14

10-02-2021-01-
29-
37_no_win_bonus
_param_update

Identical to test 7 except with a
slightly lower node penalty, no
win bonus, and slightly less
training of constants only. Purpose
was to see how win bonus would
make impact performance

Performance did not seem to have
improved, but the discrepancy between
best bot score and average bot score on the
final generation is smaller. The
evolutionary does perform better relative to
fast bots with no win bonus indicating that
the evolutionary is okay at getting a decent
amount of VP but bad at winning. The best
bots, in subsequent tests, performed closer
to their scores from training than bots did
in other tests. Population still completely
converged.

15

10-02-2021-11-
06-
39_param_update
_with_printing

Very similar to test 7 but the
high_performance_cutoff value
wasn't changed and there is no win
bonus. We printed the trees every
3 generations to see where in the
process the trees converged

Bots performed slightly better than in test
14. Trees started huge then immediately
optimized by getting as small as possible.
shows the initialization value should
probably be smaller. Trees were not
converged by gen 30, looked to be mostly
converged around gen 40 and completely
converged by the end

16

10-02-2021-21-
55-
58_smaller_init_o
perator_prob_grea
ter_cutoff

Since all the robots start with
massive trees which are then
mostly trimmed to nothing due to
the node penalty, the
operator_probability on tree
initialization was set to 0.55
(originally 0.9) this new value was
used for all future tests. Increased
the higher_performance_cutoff
after gen 30 to try to prevent
convergence in later generations

Decreasing the initialization probability
caused trees to have a much better start
when compared to previous tests. Things
had mostly evened out by generation ten.
Increasing the cutoff after gen 30 caused
scores at the end to be much worse. There
were 3 or 4 different tree structures at the
end though meaning that it did succeed in
preventing complete convergence

17

11-02-2021-11-
35-
39_smaller_init_c
rossover

Wanted to see if crossover would
be more viable with a lower node
penalty and a smaller tree
initialization value. Kept the
operator probability during
initialization at 55% and decreased
the node_penalty to 0.01.
mutation_rate was 0.2 and
operator_probability was 0.6

Poor performance. All trees were quickly
reduced to almost just the root node

18

12-02-2021-00-
04-
11_higher_sample
_rate

Wanted to try a test that selected
almost exclusively from high
performers and spent more time
evolving trees at mid level depths.
Mutation only

While performance was not great it was
better than some of the earlier results.
Comparable to test 15

19
12-02-2021-00-
39-59_big_test

Tried a test of 200 generations
with no parameter updates to see if
enough generations would be able

Improvement slowed around generation 30
and mostly stopped after generation 100.
Did not perform that well

to create a good tree structure by
change. operator_probability was
set to 45

20

14-02-2021-01-
12-
24_more_input_u
pdates

It seemed like generations with a
non-zero max_children count don't
provide any benefit over just
setting max_children to -1. So, the
new tests now only have 3
parameter updates. 60 gen with
max_children = -1, 30 with
max_children = 0, and the last ten
with constants_only set to true

Performance was better, similar to test 18.
All of the final trees are pretty small and
have very few constants.

21

15-02-2021-11-
35-
06_smaller_node_
penalty

To address the issue of the trees
being too small and lacking
constants constants, I turned the
node penalty way down to 0.005

Performance was very bad until the
evolving constants step which resulted in
an improvement bringing it up to pretty
much the score of test 20. Final result still
didn't have constants though, showing the
improvement at the end was just from tree
convergence

22

16-02-2021-14-
26-
33_smart_bot_test

Wanted to have an experiment
where we trained against smart
bots. Apart from the opponent it
had the same parameters as test 20

Good overall performance against smart
bots. In additional tests the best tree from
this experiment was able to beat smart bots
more than 25% of the time. Still performed
poorly against fast bots.

23

16-02-2021-14-
41-
39_pretrained_bot
s_test

Same as test 20 except all robots
were initialized using 8 of the best
fast bots from earlier experiments

Pretty good performance, better than test
20. Still is not better than fast bots
however.

24

17-02-2021-23-
33-
56_pretrained_bot
s_test_win_bonus

Same as test 23 except it had a win
bonus of ten

Performance seemed slightly worse than
test 23.

25

18-02-2021-11-
30-
44_pre_train_win
_bonus_fine_tuni
ng

Took the best tree from test 24 and
only trained the constant values Surprisingly, performance got worse.

26

19-02-2021-01-
53-
44_hand_made_b
ot_test

Hand crafted a tree that had one of
every input value added together.
These input values were each
multiplied by a constant. Then the
constants were all trained for 150
generations

Not a viable approach. Performed worse
than tests 23, 24, and 25

V WinGameETA recording:

Evolutionary bot has everything same as the Smart bot except that we extended the
SOCBotBrain, SOCBotClient, and SOCPlayerTracker classes.

Each bot possesses four PlayerTrackers that calculate winGameETA for its bot and three
opponents. The CSV file recording the WinGameETA calculations from these PlayerTrackers
was named after a simulation name originated in simulation.py where you can specify the
number of games and types of bots to simulate.

Simulation name passes into the Java side from simulation.py through SOCBotBrain,
SOCBotClient, and SOCPlayerTracker classes. After accessing the simulation name,
src/main/java/soc/robot/evolutionaryBot/EvolutionaryPrintWinETA.java creates a CSV file to
record winGameETA for that simulation. EvolusionaryPrintETA.java then appends to the CSV
file every time winGameETA is recalculated by an evolutionary robot, recording the following
parameters:

"GameName," "BotName," RoundNumber," "TurnNumber," "PlayerTrackerNumber,"
"winETA"

Smart bot WinGameETA recording:

SOCPlayerTracker.java has a method called recalcWinGameETA. At the end of the method, we
record WinGameETA with the same procedure as the Evolutionary bot. This happens in the file:
src/main/java/soc/robot/PrintWinETASmart.java

Turning OFF and ON of WinGameETA recording:

Change “false” to “true” in the line 86 of SOCPlayerTracker to turn on Smart Bot’s
WinGameETA recording.

RECORD_ETAS is a variable passed on from SOCPlayerTracker to EvoPlayerTracker,
WinGameETA recording will be activated for Evolutionary bot as well.
To record WinGameETA for only SmartBot, consider commenting recording code in
EvoPlayerTracker. It is the same for Evolutionary bot.

WinGameETA visualization:

First, run the simulation.py.
Then, evo_simulationName.CSV file is created in the python folder.
Second, run the plot_etas.py.

There are two different plotting option:

- First: plot a single robot’s four playTracker’s WinGameETA predictions over an entire
game.

- Second: plot each robot’s winGameETA predictions for a single robot over the course of

a game.

To store WinGameETA of each playerTracker of each bot for every turn, we loop through the
CSV one time to create the dictionary of dictionaries of lists. Then with a second loop over the
CSV, we put the values into the data structure. The data structure was later used by the Python
visualization library.

NOTE: matplotlib must be downloaded in order to generate the charts:
https://matplotlib.org/downloads.html

VI Tree printing instructions

print_tree.py

- This file generates a pdf image of a bot’s tree given a bot’s text file
- Graphviz, a graph visualization package that may need to be installed:

- https://graphviz.org/
- https://pypi.org/project/graphviz

- To use:
1. Make sure print_tree.py is in the same directory as the file you want to use to pass

in a bot’s text file
2. At the top of this file, import print_tree.py (“import print_tree”)
3. To generate a pdf image of a bot’s text file, call print_tree.main()

a. print_tree.main() has 4 parameters
i. simulation name

ii. bot’s text file
iii. generation number
iv. boolean to open the pdf image when it is generated (defaults to

false)
b. example 1: print_tree.main(“sim1”, “bot1.txt”, “1”)
c. example 2: print_tree.main(“s10”, “bot2.txt”, “g10”, True)
d. example output: sim1-bot1-1.pdf

4. You can also print trees directly from print_tree.py, by calling main() directly in
the file with the appropriate parameters

- Generated images are added to a folder named “tree-output”

Sample tree file input:

Sample print tree output:

VII Genetic Tree Inputs

Time To Longest Road

- The estimated time to own the longest road
- getLongestRoadETA(), SOCPlayerTracker
-

Roads To Go
- The number of roads to build to obtain the longest road
- getRoadsToGo(), SOCPlayerTracker

Knights To Go

- The number of knights needed to obtain the largest army
- getKnightsToBuy(), SOCPlayerTracker

Largest Army ETA

- The estimated time to obtain the largest army
- getLargestArmyETA(), SOCPlayerTracker

Resource Income

- The number of different ways a player can obtain a resource. For a given resource, it is
the number of that resource you get summed over all 36 possible dice rolls.

- getResourceIncome(resource), EvolutionaryPlayerTracker
- Function takes in a resource as a parameter, or “total” for all resource income combined

- Resources: brick, log, ore, sheep, wheat

Current Resources

- The amount of a resource that a player owns

- getResourceCount(resource), EvolutionaryPlayerTracker
- Function takes in a resource as a parameter: brick, log, ore, sheep, wheat

Total Resources:

- The total amount of resources that a player owns
- getTotalResources(), EvolutionaryPlayerTracker

Current VP

- The current number of victory points that a player has
- getCurrentVP(), EvolutionaryPlayerTracker

Port Count

- The number of ports a player has access to
- getPortCount(), EvolutionaryPlayerTracker

Dev Card Count

- The number of development cards a player has
- getDevCardCount(), EvolutionaryPlayerTracker

Build Location Count

- The total number of remaining possible settlement locations
- getBuildLocationCount(), EvolutionaryPlayerTracker

Ready Build Spot Count

- The total number of playable settlement locations in the next turn
- getReadyBuildSpotCount(), EvolutionaryPlayerTracker

Build ETA’s

- The estimated time to build something
- getBuildETA(type), EvolutionaryPlayerTracker
- Type parameters: road, settlement, city, dev card

VIII Instructions for building Jsettlers and running experiments

Note that the “Readme.md” file in the base directory and the “Readme.developer.md” file in the
“doc” folder are great places to look if you are confused or want more details regarding how
Jsettlers works and what its parameters are. There are several different ways you can run jsettlers
games. After reading the instructions for building jsettlers, I recommend you look at all the
different methods before you start with one.

Building Jsettlers:

1. Download IntelliJ and clone/open the repository. I recommend opening the “python”
folder with PyCharm as well but if you want you can use IntelliJ for the entire project
(this would require you to configure a python interpreter in IntelliJ). You’re free to use

other IDEs as well but certain steps in this guide may not be applicable to other
environments

2. The project uses gradle to build. This should be installed by default. The project may
automatically connect to gradle on start-up or you may see a pop-up asking you to
connect to gradle (if you do, select yes). If your project didn’t connect to gradle, try
closing it and reopening it. If that doesn’t work you’ll have to try troubleshooting. Here is
the IntelliJ documentation on gradle which is a good place to start. When this is done you
should have an automatically generated gradle wrapper file in your root “gradlew”

a. You will know you are successfully connected to gradle if you have a sidebar
on the right hand side of your screen that says gradle. Clicking this will open
the gradle tool window. You can also open the gradle tool window via
“View→Tool Windows→Gradle”.

3. To build the project, open the gradle tool window, open the drop down, and select
“Tasks→build→build”. You’ll have to build anytime you edit the java code. I
recommend saving this as a run configuration. While you’re building it may say
some tests are failing, just ignore these warnings. After building you should have a
new, auto generated “build” folder in your root directory.

a. Optionally, you should now be able to run Jsettlers via the gradle tool
window via “Tasks→application→run”

4. If you want to run simulations with the evolutionary robot, you must copy and paste the
file named “gson.jar” (found in the root) into the folder with the other jar files
“build/libs/”

Running robot only games (default method):

- Note: I generally don’t recommend running games this way. The default method of
running robot only games is very bad and gives you very little control over which robots
are in which games.

1. Ensure that all the steps in the building Jsettlers section succeeded
2. Check the Jsserver.properties file in the root directory. These are all command line

arguments that the jsettler server uses on start-up. For more details regarding these
parameters and other unused parameters, refer to
“src/main/bin/jsserver.properties.sample”. To run a single robot only game, uncomment
the line that reads “jsettlers.bots.botgames.total=1”. (the other parameters are all fine).

a. If you want the server to shut down when the bot only games have finished, set
the line that reads “jsettlers.bots.botgames.shutdown” to be equal to “Y”

3. Right click on and run the jsettlers server jar file which should be in the automatically
generated build folder: “build/libs/JSettlersServer-2.4.10.jar”. I recommend setting this as
a run configuration.

Running robot only games from an input file:

1. In the Jserver.properties file, uncomment the line that reads
“jsettlers.bots.botgames.total=input.csv”

a. Optionally, if you want to see the results of the game, uncomment the line that
reads “jsettlers.bots.botgames.total=input.csv,test_results.txt”

b. Note that input.csv and test_results.txt are just default file names, you can use
whatever file names you want as long as they correspond to actual files that have
already been created

2. Set up your input.csv file. There is a sample file in the base directory but feel free to edit
it. Note that input files must be very precise and have no extra spaces or blank lines.
Input files have the following format:

a. The first row is where you declare all of the built-in jsettlers robots separated by
commas. Note that if a robot’s name starts with “s” it will be a smart bot and if it
starts with “f” it will be a fast bot.

b. The second row is where you declare third party robots. Every two indices in this
row are part of a pair where the first value indicates the name of the third party
robot and the second entry indicates the location of that robot’s client in the code.
Note that if you want to use evolutionary robots, the evolutionary robots name’s
must correspond to existing text files (without the .txt extension) that have a
robots encoded genetic tree.

i. If you don’t want to include third party bots. Leave this line blank
c. All subsequent lines represent an individual robot only game. Each of these lines

will have four bot names (among those that you specified in lines 1 and 2)
separated by commas

3. Optionally, set up the result file. If you want to record the results of the game be sure to
have initialized an empty text file with a name that matches the value you passed into the
jsserver.properties file.

4. Run the jsserver.jar file: “build/libs/JSettlersServer-2.4.10.jar”

Important Notes:

The python folder contains files that run tests and perform experiments automatically, if you
want these files to work properly, be sure to mind the following:

● If you want to run simulations with the evolutionary robot and you haven’t already done
so, copy and paste the file named “gson.jar” (found in the root) into the folder with the
other jar files “build/libs/”

● Running simulations and experiments via the python code: The python code has a lot of
functions that automate the process of creating input files and running experiments. In
order for these functions to work, your path to the jsettlers jar files must match ours. So,
the root directory must contain a “python” folder and a “build” folder. All the python
files should be in the python folder. The build folder should contain a folder called “libs”
that has all the jar files:

○ Root
■ python

● [Python_file_1]
● [Python_file_2]
● [etc.]..

■ build
● libs

○ gson.jar
○ JSettlers-2.4.10.jar
○ JSettlersServer-2.4.10.jar

Running the simulation.py file

The python code has a built in class that automatically generates input files, runs simulations,
and parses results files:

1. Navigate to python/simulation.py
2. Create your simulation object in the main method. All the parameters are explained at the

top of the class. Note that any evolutionary bots you include must have their text files
initialized with their trees.

a. If you only want to run games with jsettler robots, set “no_evo” to true when you
create your simulation object

b. To initialize evolutionary robots, navigate to the python/test_set_up.py file. In the
main function run the “initialize_new_bot()” method passing in whatever name
you want for the new evolutionary robot. Note that this file is set up so 1
evolutionary robot will play against 3 built in robots. It does not support
evolutionary robots playing each other

3. Run the simulate method on your simulation object
a. If you want to see the results, be sure to print out the result of the four get

methods after simulation is ran
4. One important note is that if you want to rerun a simulation with the same name, be sure

that the input and results file from the last run are deleted

Running Evolutionary robot experiments:

1. There are a couple of dependencies that must be installed for experiments to work.
a. Time outs: timeout and retry logic will work by default on Linux. The “time_out”

parameter in “python/simulation.py” has instructions for how to set up timeouts
on mac.

b. Print tree: If you wish to have the experiment print the population of trees as it
runs, you will need to have all the dependencies for the “python/print_tree” file.
Refer to section 6 for details. I recommend you test this out before trying to print
trees in the experiment.

2. Set up a Json configuration file with all the parameters of your experiment.
“python/trainer_config_sample.json” provides the sample format these configuration files
use. To summarize some of the different components of it:

- “Tree-depth” is the max depth that evolutionary trees are allowed to have.
NOTE: changing this value is just for bookkeeping purposes and does not
actually change the tree depth. To change the tree depth, navigate to
“src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotBrain.java” and set the
instance variable “MAX_DEPTH” to whatever integer you want

- “Training_runs” is a list of different experiments. Each experiment is a json and
they will be automatically run one after the other.

- “name” is the name of the experiment

- “bot_count” is the number of evolutionary robots you want in the experiment
- “print_rate” is how frequently the generation of genetic trees is printed. If you

don’t want the trees printed automatically, set this to 0
- “initial_bots” is a list of pre-existing bot files used to initialize your new robot

files. If you want to start with new, random evolutionary robots, leave this empty
- “training_sessions” is a list of dictionaries where each dictionary contains a set of

training parameters. This allows you to modify the parameters of an experiment in
the middle of its run. E.g. you could do 10 generations with one set of parameters
and then train for another 20 generations with a different set. All of these
parameters come directly from the evolutionary bot trainer so refer to the Trainer
section or the “python/trainer” file for reference.

- One note is that the number of games done in a generation is the
games_per_bot * bots_per_sim. Jsettlers will run out of memory if too
many games are running simultaneously (I’ve found that it's best to keep
the number of fast bot games running simultaneously under 100 and the
number of smart bot games under 30). To make sure you don’t have too
many games running at once, you can set the bots_per_sim value to
whatever you want. Changing bots_per_sim will have no effect on the
results of the experiment.

3. Go to “python/trainer_automator.py” and in the main method call the run_experiments
function while passing in the path of your configuration file

4. After running, you should have a new folder for each experiment that has the results. See
the experimental results for details regarding the contents of these folders

IX Summary the Repository:

Top level directory:

● “Experimental-Results” directory: Contains the results of all of the Jsettlers simulations
we ran. See section 4 for more information.

● “python” directory: Contains all of the high-level code for the evolutionary algorithm (i.e.
all the code that isn’t directly part of the Catan game). This includes code for running
simulations, different trainers, files for analyzing/visualizing results and configuration
files.

● “jserver.properties”: parameters for the jsettlers server. See the instructions for relevant
parameters and refer to “src/main/bin/jsserver.properties.sample” for a sample.

● “Input.csv”: a sample input file used to initialize bot games. See the “running robot only
games from an input file” part of section 8 for details.

● “deploy.sh”: A script that uploads all the necessary files to the Carleton cs servers.
Preserves the necessary file path outlined in the instructions.

● “gson.jar” file: A jar file that the evolutionary bot uses to write its tree to a file and load
in its tree from a file. Must be copied and pasted into the same directory as the other jar
files.

● “src” directory: contains all of the actual settlers of catan code.

● “doc” directory: more documentation by the jsettlers creators.
● “target” directory: jsettlers directory used by gradle.
● “Evolutionary_Bot.txt” file: a sample evolutionary robot text file.
● “Readme.md” file: Instructions written by jsettlers creator. Is not up to date with the new

additions to the code base.
● “test_results.txt” a blank file you can use to write game results to.
● “build.gradle” file: handles building the project.
● “.gitignore” file: Keep track of files you don’t want in version control

Additions to Jsettlers code:

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryPrintWinETA.java: Helper file for
printing out the win ETA for evolutionary bots. See section 5 for more details

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotClient.java: Extends
SOCRobotCleint. Handles the initialization of new Evolutionary robots. Creates the
evolutionaryBotBrain.

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryPlayerTracker.java: Extends
SOCPlayerTracker: Overrides the recalcWinGameETA method with the evolutionary
tree strategy. Has all the different methods for getting tree input values (see section 7 for
more details)

● src/main/java/soc/robot/evolutionaryBot/EvolutionaryBotBrain.java: Extends
SOCBotBrain. Primary logic for the evolutionary robot. Keeps track of all the different
constants, tree input values, and operators used by genetic trees. Has a GeneticTree
subclass which is used to recalculate the winGameETA. The geneticTree subclass also
has subclasses for TreeNodes and TreeInputValues. Logic for initialization, mutation,
and crossover are also part of the Genetic Tree and are called via the main method (see
section 3 for more information). Genetic trees are either randomly generated or read in
from an evolutionary bot’s text file. EvolutionaryBotBrain also overrides the relevant
methods from SOCBotBrain in order to ensure that it is using the Evolutionary player
trackers but also following the same logic as smart bots. See comments in the code for
more details.

Modified files in the Jsettlers code:

● src/main/java/soc/game/SOCGame.java: made some instance variables public
● src/main/java/soc/game/SOCGameOption.java: Some of the unused game options were

causing the client to crash when trying to initialize a bots only game while connected to
the server. These are now excluded from possible game options.

● src/main/java/soc/game/SOCPlayer.java: potentialSettlements was made public.
● src/main/java/soc/robot/SOCBuildingSpeedEstimate.java: some methods were made

public.

● src/main/java/soc/robot/SOCPlayerTracker.java: some methods were made public and the
getSOCPlayerTrackerCopy method was modified to be able to make new Evolutionary
Player Trackers. Optional Win ETA printing for smart bots was added as well.

● src/main/java/soc/robot/SOCRobotBrain.java: Gson was imported, a geneticTree instance
variable was created, ourPlayerName was made public.

● src/main/java/soc/robot/SOCRobotClient.java: an instance variable was created for the
simulation name.

● src/main/java/soc/robot/SOCRobotDM.java: getETABonus was made public.
● src/main/java/soc/robot/PrintWinETASmart.java: Helper file for printing out the win

ETA for smart bots. See section 5 for more details
● src/main/java/soc/server/SOCGameHandler.java: Printing game results to a file was

added (lines 2719 - 2741).
● src/main/java/soc/server/SOCLocalRobotClient.java: Created a new client constructor

that lets the simulation name be passed to the robot clients.
● src/main/java/soc/server/SOCServer.java: Implemented initialization bots via an input

csv file. See section 8 for instructions on how the input csv works. Most of the relevant
new code is in if statements that start “if (GAMES_FROM_FILE)”. Some warnings were
also commented out to allow the evolutionary bot to be playable through the client.

● src/main/java/soc/server/SOCServerMessageHandler.java: Some warnings were
commented out to allow the evolutionary bot to be playable through the client.

● src/main/java/soc/util/SOCRobotParameters.java: setStrategyType was made public
● src/test/java/soctest/util/TestGameList.java: Some warnings were commented out to

allow the evolutionary bot to be playable through the client.

“python” directory:

● “old_trainer_stuff” python package: Contains files relating to a deprecated robot training
method.

● analysis.py: A script for providing quick analyzing the results dictionary that is output
from training.

● jsserver.properties: same as the properties jserver.properties file in the top level directory
but the botgames.total left blank because we declare this explicitly in simulation.py.

● plot_etas.py: File that plots winETAs for robots. See section 5 for details.
● print_tree.py: File that visualizes tree text files. See section 6 for details.
● simulation.py: Automatically writes input files, runs Catan simulations, and analyzes

results. See comments in the file for details on parameters and see the simulation.py notes
in section 8 for instructions.

● test_set_up.py: Contains calls to the main method of the EvolutionaryBotBrain used for
initializing evolutionary robots, performing crossover, and performing mutation.

● timer.py: Tests how long different simulations take.

● trainer.py: The training algorithm. See section 2 for more details.
● trainer_automator.py: Reads in a json configuration file and automatically queues and

packages experiments. See the experiment part of section 8 for details.
● trainer_config_sample.json: a sample configuration file used by the trainer_automator.

See the experiment part of section 8 for details

