
A Comparison of Image Segmentation
Algorithms

Jessie Baskauf, Gabriel Brookman, Toni Eidmann, Miriam Gorra, Henry
Pearson, Bryan Richter

Carleton College

Abstract. Image segmentation is the task of labeling the pixels of an
image into groups that are representative of some sort of coherent el-
ements of the image. It is a complex task, and many algorithms exist
to accomplish it, with varying degrees of success. We explore six alter-
natives to solving this problem and discuss their relative strengths and
weaknesses, evaluating both by qualitative comparisons to ground truth
images and by two different evaluation metrics.

Keywords: image segmentation, thresholding, region growing, split and
merge, k-means, watershed, minimum cut

1 Introduction

Image segmentation is a process by which image pixels are grouped into different,
separate sections known as segments. These segments are intended to be repre-
sentative of elements of the image, such as an object, foreground, or background.
This means it can be somewhat of a subjective task, as different people might
consider different elements of the image to be important enough to merit their
own segment. We will consider this factor when detailing our choice of datasets.

Image segmentation is a distinct problem from image recognition, as there is
no thought given to identifying what sort of object a segment actually represents.
Images are segmented in order to be easier for a computer to work with, as
instead of looking at the collection of pixels as a whole it can work with smaller
sections of pixels in order to accomplish tasks.

Image segmentation is commonly used for many different tasks such as seg-
menting medical images to find abnormalities, segmenting finger print images
to make it easier to recognize fingerprints, and segmenting satellite imagery to
find patterns in the land. Image segmentation is also commonly the first step of
image recognition, as once an image has been segmented it can become easier to
recognize what each segment is, as opposed to viewing the picture as a whole.

There are multiple different algorithms used to segment images, and each
algorithm has its own benefits and drawbacks. Some require specific knowledge
about the images that you will segment; others are very fast but make assump-
tions about the data. For our project, we implemented and tested six of these
algorithms. The six algorithms we worked on were thresholding, region growing,
split and merge, k-means, watershed, and min-cut. Each of these algorithms is
significantly different from the others, despite being used for the same task.

2 A Comparison of Image Segmentation Algorithms

2 Algorithms

In this section, we will dive deeper into the six different image segmentation
algorithms we implemented. We start by looking at the simplest algorithm and
move on to more complex ones. It is important to note some terminology that we
use throughout our discussions of the algorithms. To start, we assume an image
is a 2D array of n pixels. An individual pixel can be referenced by defining the
coordinate (i, j), where i is a row and j is a column. Furthermore a pixel has
color intensity values for red, green, and blue, each ranging from 0 to 255, which
are its RGB values. Different combinations of RGB values are what produce
each pixel’s color and make up an image. We will also consider grayscale pixel
intensities, which range from 0 to 255, where 0 is black and 255 is white. Each
algorithm takes in an image and outputs a 2D array of integers, representing the
label of the segment that each pixel has been grouped into.

2.1 Thresholding

Thresholding is an image segmentation technique that works by selecting one
or more thresholds for some pixel value, and then labeling each pixel relative
to the thresholds. For example, if an image were in grayscale and you picked a
threshold of a 127, you would divide the pixels of the image into two segments
based on whether their grayscale values were above or below 127. Thresholding
is a simple but effective algorithm that works extremely well on simple images
but starts to suffer against more complicated images.

Picking a threshold is the most important piece of this technique, and there
are multiple effective ways of doing so. Images are often converted to grayscale
for thresholding, as picking a grayscale value to threshold on is relatively simple
as opposed to worrying about RGB color or other pixel characteristics. With
grayscale images, the first threshold selection we applied was by using the im-
age’s average grayscale value. This was a very quick and effective technique that
worked well on images with very clear and obvious separate segments, but on
even slightly more complicated images would get thrown off by multiple high
grayscale pixel values. We then transitioned to Otsu’s method for thresholding
selection [14], an algorithm that creates a histogram of counts of pixels at each
possible grayscale value and tests every possible threshold value to find the one
that maximizes the difference between the two sides of the threshold (above and
below).

Otsu’s threshold selection algorithm works by minimizing the intra-class vari-
ance, described for each possible threshold t, which is a grayscale value (and its
corresponding histogram index) by:

σ2(t) = w0(t)σ2
0 + w1(t)σ2

1 (1)

In this function, w0 and w1 are the probability of something being below and
above the threshold, respectively. This algorithm checks every possible threshold
and calculates this value, then finds the value for which it’s minimized.

A Comparison of Image Segmentation Algorithms 3

Otsu’s algorithm was a bit slower than average grayscale value, but worked
incredibly well on two object images. We used Scikit-Image’s implementation of
Otsu’s which was both quick and effective. An issue with Otsu’s algorithm arises
on more complicated images however, as Otsu’s assumes that a histogram to be
thresholded will be bimodal and thus gives worse results on other shapes. This
points to the downside of thresholding, which is that it’s fundamentally limited.

We focused on finding a single threshold in grayscale, but other thresholding
algorithms exist that focus on color, intensity, or other pixel values. There are
also ways to select multiple thresholds to extend thresholding to multi-object
images. Our project did not focus as much on these extensions as the more
complicated a thresholding algorithm becomes, the more it loses its advantage of
speed. While we observed that thresholding was very effective on simple images,
grayscale thresholding performed worse on images that contained more segments
and were more complicated. While there are multiple other ways to threshold
images than just on grayscale, the limit that all thresholding algorithms share
is that they care only about a single criteria on which to threshold. In reality, it
is often a combination of things that allows images to be segmented effectively,
and thresholding does not account for that.

2.2 Region Growing

Seeded Region Growing is a widely used region-based image segmentation al-
gorithm first created by Adams and Bischof in 1994. The algorithm begins by
selecting a seed or set of seeds either manually or by some automatically gen-
erated method. There are several different approaches for seed selection, which
vary in success, however, ultimately we implemented random seed selection with
a single seed as the baseline method. After seed selection, a threshold is chosen or
computed by some method. This threshold is a homogeneity criterion, which is
then used in deciding which pixels to add to the region. For our implementation,
the chosen method was Otsu’s Algorithm, similar to the one used in threshold-
ing. This is also the method that is most commonly found in literature on region
growing [16].

Thereafter, the neighbors of the seed pixel are found. Again, there are dif-
ferent choices a programmer can make, and we decided to use the 8-connected
neighboring pixels. For each pixel in the neighboring region, its RGB color values
are extracted and compared to the seed values. There are multiple ways to com-
pare pixels to each other, but the one most commonly used in the literature is
Euclidean distance. These distances represent how similar or dissimilar in color
the pixels are to the seed. The Euclidean distance is found for each neighboring
pixel to the seed or the region. The pixel that has the smallest distance to the
seed is the one that is the most similar to the seed in color. This pixel is then
compared to the threshold value that was already calculated. If the distance from
that pixel to the seed is less than the threshold, it is similar enough to be added
to the region. Thus, after the first iteration, the region consists of a seed pixel
and one of the most similar neighboring pixels. This process is repeated until all
of the pixels in the image are assigned to be either in the region of interest or

4 A Comparison of Image Segmentation Algorithms

outside of it. As a result, region growing produces a binary image, where each
pixel is assigned to one of the two resulting segments.

Since there are a wide range of ways to implement region growing, our algo-
rithm is only one particular example of what region growing can do. Specifically,
there are variations that may change the results of the segmentation. For exam-
ple, we decided to select a single seed for the entire image. Other implementations
use more than one seed over the image and grow outward from each of those
seeds in parallel to form the segmentations. This does seem to have benefits, as
it may segment some images better. This is because if a seed is in a region that
has strict boundaries, it may never grow to the other side of the image even
though there may still be an object there. However, if there are two seeds, it is
more likely that the other object will be found if the other seed is in that region.
However, from our results, we found that increasing the number of seeds greatly
increases the already slow runtime of our algorithm, without actually improving
the results significantly. Therefore, we stuck to a single seed.

Furthermore, random seed selection is not the ideal method for choosing the
optimal seed and creating the best segmentation. However, seed selection is the
most important step of this algorithm. A better seed will produce a better seg-
mented outcome. However, this was not discovered until the end of the project.
For now, our algorithm may select a good seed by chance, but it also may select
a very bad one that produces a horrible segmentation. Though this method is
not great, it did show us how vital seed selection is to the success of region
growing. After further research, we found that there are several other methods
in the literature that select seeds for this algorithm in varying ways. Many of
these are more complex than we had time to implement but would be interesting
to attempt in the future.

One such example uses the idea of edge detection. On a high level, this algo-
rithm finds the edges of an image while suppressing noise at the same time. The
first step of this seed selection process begins with finding the RGB values from
the input color image, which we can easily find. Next, a gradient magnitude is
computed of the RGB components of the image using an algorithm called the
Sobel Edge Detection Operator [15]. The gradient magnitude for each compo-
nent is added, producing a new color image. Using edge detection computes the
gradient of the image intensity function. In other words, it shows where the im-
age has regions of high contrasting intensity. Finally, the threshold is used to find
the seed pixels. This approach is much more advanced than random selection,
and would require more time than we had available to successfully implement,
though it does seem straightforward enough to be used for seed selection.

2.3 Split and Merge

The region split and merge algorithm is a two-part region-based image segmen-
tation algorithm. The algorithm actually consists of two mutually dependent
processes, split and merge. The goal of split and merge is to take a set of pixels
R representing the image, and produce a set of regions Ri such that R1, R2...Rm

A Comparison of Image Segmentation Algorithms 5

= R. To do this, we first develop a predicate P such that:

P (Ri) =

{
1 if Σ(X−X)2

n−1 ≤ T ∈ Z
0 if otherwise

(2)

We then process the image as follows

1. Run P (R)
(a) If P (R) is TRUE, move on to step 2
(b) IF P (R) is FALSE, create four new regions R1-R4, each containing the

pixels of one of the four quadrants of R. Then repeat step 1 for each
until they are all done.

2. ∀: Ri ∈ R; ∀Rj such that Ri is adjacent to Rj :
if P (Ri ∪Rj), then merge Ri and Rj

3. ∀: Ri ∈ R; set the value of each pixel to the average value of all pixels in Ri.

[20] [10]
Ideally, split will create a minimum level of detail for a given segment, in

order to define the edges of what will become the final regions. Because split will
invariably over-segment in this process, merge is a requisite part of the algorithm,
creating the maximum level of detail for the final regions by solidifying segments
that are ultimately unimportant.

This can be completed quite quickly; the O-complexity of the algorithm is
O(n log n), though it can be greater depending on the implementation of merge,
which is dependent on how the data from split is stored. However, split and
merge’s greatest quality is the fact that it can produce an arbitrary number of
segments; this gives it an additional degree of computability power regarding
complex images that have multiple distinct regions. It also is quite good at not
over-segmenting on “tiny” details, such as noise from objects like water and
foliage, as well as gradual gradients created by soft lighting in the photo.

The major weakness of split and merge is that the ultimate top-down design
can lead to both over-segmenting and under-segmenting. Images that are quite
simple, such as a single object located in a corner of the image, can be read as
being homogeneous, while even a significant detail that goes over quarter lines
could also end up being blended into a single region, due to its details being
only considered in half of two wholes arbitrarily. These issues mostly stem from
the fact that split is a dumb algorithm, simply dividing the image into recur-
sive quadrants until it no longer can without any specific discernment besides
the homogeneity test. Merge, which is only slightly more discerning, is slave to
whatever was produced by split. As such, much of the accuracy of the metric
rests solely on the homogeneity test, which is a lot of work to press on a sin-
gle part of the algorithm. It should be noted that this implementation of split
and merge as referenced in this paper is not quite complete; while merge can
be accomplished within quadrants, regions belonging to two separate quadrants
cannot be merged. This is mostly due to the lack of time to implement a means
of checking for adjacency between regions of different sizes. As such, our version
of split and merge has a tendency to over-segment quite a bit.

6 A Comparison of Image Segmentation Algorithms

2.4 K-Means

K-means is a general clustering algorithm with many applications, including
image segmentation. This broad utility makes it well-researched, but also less
effective at image segmentation than some other, more specialized algorithms.
The basic concept behind k-means is to assign every data point (in this case, a
pixel) to an initial cluster, then iteratively improve those cluster assignments.
The algorithm begins by choosing k cluster centers, then assigns each data point
to the center whose color values are nearest to them. Then the new centers
of these clusters are recomputed based on the averages of all points for each
cluster. The algorithm then once again assigns points to their nearest center,
and continues updating centers and assigning points until convergence (when
the centers stop being significantly updated in each new iteration) [5].

While k-means is a popular algorithm, it has several notable weaknesses. The
most pressing is its inability to choose the number of clusters it creates, instead
relying on the parameter k. This can be useful for some applications, since the
user can specify the number of segments desired, and it is both flexible and
doesn’t risk drastically oversegmenting. However, since we wish to be able to run
k-means automatically on a wide range of images, some means of choosing k must
be used. For this purpose, our algorithm uses the elbow method, which runs k-
means multiple times, with increasing values of k. It then calculates the distortion
of each segmentation by finding the average distance of points from their cluster
center. As the number of clusters increases, the distortion will always decrease,
but there is usually a visible “elbow point” after which additional clusters offer
little improvement [21]. We automatically find this elbow by finding the point
with the maximum distance from the line between the first and last values of k
tested. This point is a good choice for k, as it finds the number of clusters where
each additional cluster has significantly decreased distortion.

K-means runs in O(n ∗ k ∗ i), where i is the number of iterations until con-
vergence, and typically rises along with k, since there are more cluster values
that must converge. This means it runs quite slowly on the number of pixels in
our images, especially since the elbow method requires running k-means multiple
times on each image. Our implementation took around seven minutes per image,
which meant we were unable to test varying which features we used to calculate
closeness, or run expectation maximization, the probabilistic variant of k-means.

2.5 Watershed

The watershed algorithm we explored is based on a 1992 paper by Beucher [2].
This algorithm is intuitively based on the idea of treating a grayscale image
as a topographic map, with the darker pixels in the image corresponding to
lower points on the map, and lighter pixels corresponding to higher regions. A
watershed line, below which everything is flooded, is raised through the map,
and as it floods it forms pools starting at each local minimum. These pools stop
growing wherever they touch one another, and each pool becomes a segment
that the algorithm outputs.

A Comparison of Image Segmentation Algorithms 7

To accomplish this, each pixel is enqueued into a priority queue so that the
darker pixels are placed at the start of the queue and the lighter pixels at the
end. Each pixel is dequeued, and different things are done to it based on how
many neighbors it has that are darker than it:

1. If it has no neighbors darker than it (in other words, it’s a local minimum),
it is labelled with a new label.

2. If it has one neighbor darker than it, or more than one darker neighbor but
all darker neighbors have the same label, it is added to the pool that its
darker neighbors are a part of, by giving it the same label as they have.

3. If it has multiple labels on darker neighbors, multiple pools are trying to add
it at once, which means that it’s a border between those pools. As such, it’s
given a special ”wall” label.

After all pixels are dequeued and given the appropriate label, each wall pixel is
merged into an arbitrary non-wall region that it borders, to bring watershed’s
segmentations in line with the segmentations of other algorithms. Because each
pixel is enqueued once and labelled once, the algorithm runs in O(n) time.

This naive watershed drastically oversegments images, because it creates a
new segment for each local minimum, which noisy images have a great deal of. To
mitigate this problem, we used two different strategies. First of all, we smoothed
each image with a blurring filter before using the watershed algorithm, which
reduced the number of local minima. This filter works by setting each pixel’s
value to the average value of all of the pixels within a certain radius of it.
Second of all, we used dynamic Wolf pruning [3]. This means that whenever a
wall pixel is going to be assigned, the depth of all neighbor pools are checked
(depth is the distance from the pool’s minimum to its lowest neighboring wall).
If the depth is too low, the pool is merged with one of its neighbors instead.
This resulted in a drop in worst-case runtime to O(n3), since re-labelling an
image is very expensive in the worst case. However, in practice there was almost
no slowdown. By using blurring and Wolf pruning, we were able to reduce the
amount of oversegmentation produced by the watershed algorithm and improve
its performance.

2.6 Minimum Cut

The minimum cut algorithm that we explored is based off of a paper from 2000
by Shi and Malik [18], who optimized an earlier attempt at using minimum cuts
for image segmentation by introducing a normalization strategy to counteract
the original algorithm’s tendency to create small segments. The basic algorithm
builds on the idea that a graph can be partitioned into two components by
removing edges such that the total amount of weight on the edges removed is
minimal. This algorithm is commonly used in directed graphs that have a single
source node and a single sink node, and can be shown to be equivalent to the
problem of finding the maximum flow through such a network. However, this
version of the algorithm works on an undirected graph with no specified source
and sink nodes.

8 A Comparison of Image Segmentation Algorithms

First, the image is converted into an undirected graph whose vertices corre-
spond to pixels and whose edges go between pixels that are close to each other,
with edge weights based on how similar two pixels are to each other. Similarity
can be measured in a variety of ways. Possible values include Euclidean distance
between RGB values, physical Euclidean distance in the image, or even met-
rics that attempt to capture more complex patterns. In this project, we only
considered RGB distance and physical distance. We can still find a minimum
cut in this graph, but to calculate a normalized minimum cut precisely in this
scenario, we would need to consider all possible pairs of source and sink nodes,
which is computationally intractable. The normalized cut algorithm attempts to
alleviate this issue by solving an approximation of this problem using eigenvalue
calculations.

The idea behind the normalized cut is that it acts as a measure of how well
a cut dissociates between segments and how well it associates within segments.
It can be shown that these two factors are dependent on each other. Given a
partition of the set of vertices V in to components A and B and a corresponding
cut value cut(A,B), the cut value is normalized based on the level of association
(weight on all the edges) between the vertices in each of the components and all
of the vertices in V (see Eq. 3). The Ncut value for this partition of the vertices
can be computed to measure how good that particular partition is (see Eq. 4),
but finding the minimum Ncut value out of all possible partitions is NP-hard.

asso(A, V) =
∑

u∈A,t∈V
w(u, t) (3)

Ncut(A,B) =
cut(A,B)

asso(A, V)
+

cut(A,B)

asso(B, V)
(4)

Fortunately, this minimization problem can be solved by finding particular
eigenvalues and eigenvectors for a matrix that is constructed based on the adja-
cency matrix of the graph. This calculation can be approximated more efficiently
by relaxing some of the constraints on what the eigenvectors can look like. (The
approximate eigensystem allows eigenvector elements to have real values rather
than one of two specific values. After finding the right generalized eigenvector,
we can threshold each of the values in the vector at some point to create a binary
vector that approximates the actual binary vector achieved by doing the original
NP-hard calculation.)

Overall, the algorithm boils down to the following steps:

1. Create a weighted graph from the pixels of the image, where the weight
function is dependent on distance and other factors you might choose, such
as color distance or brightness (see Eq. 5). Vertices more than a certain
physical distance (r) apart are not connected at all in the graph.

w(i, j) =

{
e
−‖F (i)−F (j)‖2

σF
+
−‖X(i)−X(j)‖2

σX if ‖X(i)−X(j)‖2 < r,

0 otherwise.
(5)

A Comparison of Image Segmentation Algorithms 9

(F is a measure you choose, such as color distance or brightness; X is physical
distance in the picture; σ is a constant.)

2. Use the eigensystem in Eq. 6 to solve for the eigenvectors with the smallest
eigenvalues (using the Lanczos method, which takes advantage of the sparsity
of the matrices to make the computation more efficient). Pick the eigenvector
with the second smallest eigenvalue.

(D −W)y = λDy (6)

(D is a diagonal matrix where D(i, i) is the total weight of edges leaving
vertex i; W is an adjacency matrix for all the pixels in the image.)

3. Threshold this eigenvector at 0 into a binary indicator vector. You can also
threshold at the median value.

4. Partition the pixels into two segments based on the corresponding values in
the indicator vector. You can partition these two components recursively if
you want more than two segments.

The running time of this algorithm is O(mn) where m is the number of steps
the Lanczos method takes to converge in calculating the eigenvector system, and
n is the number of pixels in the graph. Our implementation uses a sparse matrix
eigenvalue calculation from SciPy, which uses the Lanczos method but still runs
very slowly (around half an hour per image). Our implementation also produces
output segmentations which seem very likely to be wrong. However, because of
time constraints and the slow speed of running the algorithm, the exact bug has
yet to be uncovered.

3 Datasets

We chose two datasets to test our image segmentation algorithms on. The first
dataset, created by the Weizmann Institute, contains 200 grayscale images with
ground truth segmentations that were hand-drawn by 3 different human subjects
[1]. These images consist of two types– one object and two object images, as seen
in Figure 1 and 2, and are available as downloadable pngs.

Fig. 1. A sample one-object image from the Weizmann dataset and one of the accom-
panying ground truth segmentations.

10 A Comparison of Image Segmentation Algorithms

Fig. 2. A sample two-object image from the Weizmann dataset and one of the accom-
panying ground truth segmentations.

We decided to use the Weizmann dataset because the images are unambigu-
ously segmentable, in that they contain only one or two objects, no more and
no less. As a human, the “objects” and the background of these images are
easily defined, and any ambiguity is accounted for by the inclusion of several
human-drawn ground truth segmentations. Therefore, we could easily test our
algorithms on these images. To start, we ran our algorithms on the simplest im-
ages, which were the Weizmann one-object images. This allowed us to test if our
algorithms performed as expected, to see if they succeeded in segmenting the
image in relation to the ground truth, or if they were failing. After we were more
confident that our algorithms performed successfully on the simplest images, we
ran them on slightly more complex, two-object images.

The second dataset we used was the Berkeley Segmentation Dataset [13].
The Berkeley dataset consists of 12,000 hand-labeled segmentations of over 1,000
images, segmentations created by 30 different people. A sample image and its
segmentation can be seen in Figure 3. 300 of these images in both grayscale and
color are available for public use. The original images are available for download
as jpgs, and the ground truth segmentations are available as .seg files, which
essentially describe which pixels belong to which segments (the format is detailed
on their webpage).

The Berkeley dataset provided us with more complex, real-world images with
more complicated segmentations. Working with these types of images allowed us
to evaluate what “simple” vs. “complex” images were. Our findings will reveal
how our algorithms performed on images that had a single object and were highly
contrasted versus images that had a multitude of objects that could be segmented
in many different ways. Findings will also show how different algorithms have
varying ideas of what a simple or complex image is, as some perform better than
others on what we deem as simple or complex.

Finally, we selected datasets not only for the types of images they contained
and the ground truth segmentations, but also for their ease of access. These
two datasets provided detailed information on how to download and use each
dataset, as well as options to browse the dataset by image or by human subject to
view the ground truth segmentations. They also provide several different human

A Comparison of Image Segmentation Algorithms 11

Fig. 3. A sample image from the Berkeley dataset and the accompanying ground truth
segmentations (appearing here as an aggregate of all hand-drawn boundaries).

segmentations of each image, which helps to mitigate the problem of claiming
that only one somewhat-subjective segmentation is valid.

It is also important to note that with both datasets, we ran our in-progress
segmentation algorithms on a smaller subset of these images that we selected
for testing purposes. For our data, we ran the algorithms on a larger subset of
images, producing hundreds of data points each. All the algorithms segmented
all images with the exception of Region Growing, where difficulties with runtimes
prohibited us from running on every image in a dataset. Instead, Region Growing
was tested on a smaller, random subset of images in each of the datasets.

4 Evaluation Metrics

To quantify the quality of our segmentations and better numerically compare
the performance of our algorithms, we used two evaluation metrics. These two
metrics attempt to capture different qualities of a segmentation: the Jaccard
metric captures how well the regions of each segment match up in the ground
truth image and the segmentation, while Boundary Displacement Error (BDE)
captures how closely the edges of each segment match up. We found references
to these metrics in the literature, and we thought that they had the potential to
capture important differences between our different segmentation techniques.

4.1 Region-Based Evaluation

The first evaluation metric that we used to evaluate our segmentations was region
based – that is, it compared regions in the ground truth images and generated
segmentations to see how close they were to one another, and used that as a
metric for how good the segmentations were.

12 A Comparison of Image Segmentation Algorithms

To do this, we used the Jaccard metric, which is a way to compare two
regions to see how similar they are [8]. This metric works by counting up the
total number of pixels in either region, and counting up the number of pixels in
both regions, and dividing the pixels in both by the pixels in either. In short,
it takes the size of the union of the regions and divides it by the size of the
intersection of the regions. This formula for two regions R1 and R2 that are sets
of pixel coordinates, is seen in Eq. 7.

Jaccard(R1, R2) =
|R1 ∩R2|
|R1 ∪R2|

(7)

Although the Jaccard metric is a powerful tool for comparing regions, in order
to compare segmentations, we need another algorithm [17]. To compare two seg-
mentations to one another, we consider each region Ri in the first segmentation,
and compute its Jaccard score with every region in the second segmentation. At
least one of these, Rj will produce the best Jaccard score, and the average best
Jaccard score of all regions Ri is taken. This process is repeated for the second
segmentation, and these two averages are summed to produce the region-based
metric for segmentation similarity.

4.2 Boundary Displacement Error

Boundary Displacement Error (BDE) [22] is a measure of error that accounts
for how far apart the edges of a segmentation and the edges in the ground truth
are. It is conceivable that an algorithm might generally find the regions of the
image correctly but get the shape of the objects in the image wrong. This would
mean that the Jaccard score would be fairly good but the BDE score might not
be as good. Thus we believed this metric would measure different qualities of a
segmentation.

We calculate the BDE value by finding the minimum distances from each
edge pixel in one image to any edge pixel in the other. We formalize this as the
distance equation in Eq. 8: If B1 and B2 are the two sets of edge pixels (in the
ground truth and segmentation respectively), and pi is a pixel in B1, we say the
distance from pi to B2 is the minimum Euclidean distance from pi to any pixel
in B2.

d(pi, B2) = min
p∈B2

‖ pi − p ‖ (8)

BDE(B1, B2) =
1

2

 1

|B1|

|B1|∑
i=1

d(pi, B2) +
1

|B2|

|B2|∑
j=1

d(pj , B1)

 (9)

Overall, BDE is computed using Eq. 9. More intuitively, it is an average of
how far B1 is from B2 and how far B2 is from B1. Thus a lower value of BDE
will indicate a better match between the segmentation and the ground truth.
(Two segmentations whose edges exactly matched up would have a BDE value
of 0.)

A Comparison of Image Segmentation Algorithms 13

It is important to compute the distance in both directions and have both
terms of Eq. 9 in order to keep the metric balanced. For example, the ground
truth in Fig. 4 includes the ground and the sky as separate segments, while
the segmentation next to it does not. So there will be many edge pixels along
the horizon that are not represented in the segmentation. If we only measure
the distance from edge pixels in the segmentation to edge pixels in the ground
truth, we will find a pixel that perfectly lines up for almost every edge pixel, and
we will conclude we have a perfect segmentation with BDE close to 0. However,
if we also measure distance from edge pixels in the ground truth to edge pixels
in the segmentation, many of the edge pixels along the horizon will be quite far
away from the closest edge pixel in the segmentation. This will result in a higher
BDE value, which will better reflect the accuracy of the segmentation.

Fig. 4. Original image, ground truth, and a possible segmentation produced by an
algorithm for an image from the Berkeley dataset.

One major downfall of BDE is that, unlike our region-based evaluation met-
ric, it does not measure a percentage of possible error or correctness. It is not
immediately apparent what would be the theoretical upper bound on BDE score.
So although we can theoretically interpret a BDE score as an average error dis-
tance for edge pixels, it can be a bit challenging to interpret the implications
of that for any individual image. Therefore, when interpreting our results, we
found it more difficult than we anticipated to interpret our BDE scores.

5 Results

5.1 Thresholding

Running our implementation of thresholding on both datasets, it preformed ex-
tremely well on some images despite its relative simplicity to other algorithms.

14 A Comparison of Image Segmentation Algorithms

On images with a single distinct object, thresholding was a quick and effective
way to segment out the object. While thresholding usually messes up some indi-
vidual pixels due to noise, on the Weizmann one object images this did not seem
to drastically affect either accuracy metric.Our Jaccard metric was measured at
almost 80%.

However, thresholding performed very poorly on the Berkeley dataset. This is
due to a couple of reasons. One of the more notable is that the implementation
of thresholding we tested was a single threshold value, meaning it divides an
image into two segments. This was great on the one object Weizmann images,
but on images with a much more variable number of segments the Jaccard scores
were punished heavily, being a paltry 8% for the dataset on average. Another
issue is that the Berkeley images contain images that are incredibly difficult for
thresholding; some of the images are very homogenous in grayscale and need the
use of either another algorithm or a deeper implementation of thresholding to
work.

BDE scores were not that bad relative to other algorithms on either dataset,
though there was a slightly better score of 10 on the Weizmann dataset versus
the 13 on Berkeley. Thresholding captures edges that exist on grayscale contrast
relatively well, and is not punished as much as the Jaccard method for under-
detecting edges in the Berkeley dataset.

Since the actual ”thresholding” section of the algorithm only needs to run on
every pixel a single time, the only part of a thresholding algorithm that realis-
tically increases it’s time complexity from linear is Otsu’s method. Fortunately,
while Otsu’s does need to do some calculations on the histogram of grayscale
values as mentioned earlier, it also has a linear run time, meaning there is very
little slowdown from images with drastically higher numbers of pixels.

5.2 Region Growing

After running our implementation of region growing on hundreds of images, our
segmentations showed that the algorithm performed best on high contrast im-
ages, and struggled with less contrasting ones where the object is similar in color
to the background. This is reasonable since region growing depends on a thresh-
old, a strict cut off variable. So, if the color of the object and the background are
similar, they may fall below the threshold and be grouped, incorrectly, into the
same region. However, on images that were highly contrasted, with an optimal
seed and threshold, region growing had high success rates.

Looking at the two metrics we used to evaluate our segmentation algorithms,
the BDE scores for the Weizmann dataset proved that region growing produced
accurate results according to the ground truth of the images. On average, for
the Weizmann Dataset, the BDE score measured 9.1 and 3.8 for the one and
two object images, respectively. For the Jaccard metric, average scores were 68%
and 54% for the one and two object images. For the Berkeley Dataset, BDE was
not calculated due to time, and Jaccard had an average success of 60%. .

Finally, an interesting discovery about region growing is the runtime. In the
literature, region growing with multiple seeds runs in big-O time O(nk), where

A Comparison of Image Segmentation Algorithms 15

n is the number of pixels in the image and k is the number of seeds [6]. A major
drawback of our implementation is that it takes a long time to run; in other
words, we did not get this runtime. Given an image with dimensions larger than
255 by 255, the segmentation may take as much as an hour or more to run. For
this reason, images were resized into a 255 by 255 image, and though the output
was compressed, it allowed us to visually analyze how this algorithm performed
on different images in an acceptable time of a few seconds to a few minutes.
However, it is also important to note that this created issues down the road
with the evaluation metrics, leading to fewer results as compared to the other
algorithms.

5.3 Split and Merge

The results of split and merge sans algorithmic evaluation were mostly under-
whelming, due to the incomplete nature of the algorithm.

Starting with our BDE metric, split and merge did not actually fare all
that terribly; the median scores for the Weizmann 1 and 2 object Datasets were
8.446 and 6.024 respectively, with the Berkeley Dataset fairing similarly at 8.745.
It should be noted that the maximum scores (showing worse performance) for
this were some of the highest, at 15.45, 24.589, and 31.592 for Weizmann 1,
Weizmann 2 and Berkeley respectively. Overall respectable performance; this
is likely because BDE is an edge-focused metric, and the split portion of the
algorithm is the one responsible for defining edges.

With Jaccard, split and merge suffered the most; median scores for all datasets
did not breech .2, with Weizmann 1 at 13.4%, Weizmann 2 at 19.1%, and Berke-
ley sitting at a dismal 10.1%. While some values sit in the 97%-99% range, it is
a handful of outliers, and inspection of them yields the fact that these images
usually contained small details against solid backgrounds, that split and merge
then proceeded to segment as a solid average color. Because primary part of the
region was a single value, similar to the ground truth, Jaccard would read it as
a high accuracy rating, when really to any human user, it would read as simply
not having been segmented at all.

This is to say that practically every image was over-segmented or under-
segmented in some way. While some fault could be attributed to the fixed
threshold that we chose, and that a better threshold could have been used for
our homogeneity predicate P, there is no direction we could have gone where
all pictures would have benefited across the board. Ultimately, the problems are
both with our implementation of split and merge and split and merge itself. We
can see clearly from the Jaccard scores that the lack of a good merge algorithm
hurt our ability to create contiguous regions; without merge, there is nothing to
resolve the excessive amount of regions that split invariably creates for a given
image. That is to say nothing of the natural ”dumb” nature of the algorithm,
which makes no attempt to make intermediate steps to discern the best places
to split; it simply always makes its splits in the middle, despite that fact that
focusing on distinct features in the image, like clusters of high contrast, could
be beneficial.

16 A Comparison of Image Segmentation Algorithms

Fig. 5. Original Image and segmentation from the Berkeley Dataset

5.4 K-means

Running k-means across our datasets yielded relatively good results, particu-
larly on images with with higher contrast and homogeneous segments. In cases
such as Fig. 5 where the groundtruth segments in an image were each relatively
consistent in color, and distinct from other segments, k-means tended to do very
well. In contrast, it struggled on images such as Fig. 6 with more within cluster
variance, or ones were multiple clusters had similar colors. Since k-means didn’t
take physical distance into account, it was particularly vulnerable to producing
”speckled” segmentations, where individual pixels of one segment would be scat-
tered throughout another segment, often caused by color variance such as flecks
of sunlight.

K-means did well in choosing the number of segments via the elbow method.
Very few images are dramatically under or over segmented, which greatly im-
proves k-means performance.

The median BDE scores for k-means were 7.714 for Weizmann 1, 6.266 for
Weizmann 2, and 8.676 for Berkeley.The median Jaccard scores for k-means
were 51.2% for Weizmann 1, 54.3% for Weizmann 2, and 9.1% for Berkeley.
Visual inspection shows most images decently segmented, with the exception of
”speckling” throughout.

Fig. 6. Original image and segmentation from the Berkeley dataset.

A Comparison of Image Segmentation Algorithms 17

Fig. 7. Original image and segmentation from the Berkeley dataset

5.5 Watershed

The watershed algorithm performed best on images with several dark objects
being segmented from one another with little to no background (since a light
background is merged with darker regions, because of how watershed works).
In particular, there are a number of images – often of planes or fish – with a
dark object on a relatively homogeneous and light background. These images
are very hard for watershed, presumably because it finds deep minima only in
the darker object, and thus merges the background with the object completely
rather than treating the background as a different segment. Watershed tends to
do very poorly on these types of images, since it treats the background as a part
of the object. An example can be seen in Fig. 8.

Fig. 8. Original image from the Weizmann dataset and failed watershed segmentation
of it.

One notable quirk of the watershed algorithm’s segmentations is the fact that
they are rated as much more successful by the region based evaluation metric
than by the BDE evaluation metric. This is likely due to the BDE metric heav-
ily penalizing both over and under segmentation – having the wrong number of
segments – to a greater degree because this results in many edges in either the
ground truth or generated segmentation that are very far away from the corre-
sponding edges in the other, since those edges represent divisions not present in
a segmentation with drastically fewer segments.

Finally, a big problem that we ran into when running the watershed algorithm
on our data is the fact that each of the modifications we employed (blurring and

18 A Comparison of Image Segmentation Algorithms

Wolf pruning) require a parameter, and the parameters that produce good results
for some images are very different than the parameters that produce good results
for other images. In complicated images with many segments, a relatively low
blurring radius and high pruning threshold are advantageous, since these choices
allow for the higher number of segments that are more accurate for these images.
In contrast, relatively simple images that have noisy textures or backgrounds
require a higher blurring radius and lower pruning threshold to produce strong
segmentations. As a result of these problems, certain images in the datasets are
treated as all one segment by watershed, or as drastically more segments than
needed, since the range of parameters that produce a good segmentation for a
given image is often quite small.

5.6 Minimum Cut

Given the likely existence of a bug in the minimum cut algorithm, results ob-
tained on our dataset images were hard to conclusively analyze. Segmentations
obtained almost all had a very distinctive striped quality to them, which we at-
tributed to the bug. This seemed to be somehow linked to the distance r beyond
which pixels would not be connected in the graph (see Eq. 5), as segmentations
created with different values of r had a clear difference in stripe width (see Fig.
9). Additionally, segmentations where the graph edge weight took into account
only RGB distance had much less angular stripes than those that took into ac-
count both RGB distance and physical distance. Further testing is necessary to
figure out why exactly these factors would be linked to the bug.

Fig. 9. Original image from the Weizmann dataset and min cut algorithm segmenta-
tions for r = 16 and r = 30.

For our experimentation, we ran the min cut algorithm with r = 12 using
RGB color distance only in the edge weight. In general, this formation of the
algorithm seemed to detect the edges of regions fairly well and fairly consistently.
We see BDE scores tightly clustered around 10 for all datasets. Jaccard scores
were also clustered very tightly for each dataset, and there is a clear decrease in
Jaccard scores as the number of segments increases (Weizmann 1 Object scores
are much higher than Weizmann 2 Object, which are much higher than Berkeley
scores). This makes sense with the way that Jaccard score is calculated, since we
only ran min cut to generate two segments, so the dataset with two segments in

A Comparison of Image Segmentation Algorithms 19

the ground truths matches more closely than those with more than two segments
in the ground truths.

The average BDE score for min cut was 10.5 for Weizmann 1, 9.7 for Weiz-
mann 2, and 10.5 for Berkeley. The average Jaccard score was 52% for Weizmann
1, 30% for Weizmann 2, and 4.6% for Berkeley. Upon visual inspection, most
outlier points did not seem noticeably worse or better than the average segmen-
tations, so it is unclear what exactly led them to be outliers.

Fig. 10. Minimum cut scores for Jaccard score plotted against BDE scores for all three
datasets.

5.7 Comparative Results

We ran our six algorithms on all datasets and evaluated their results with both
metrics, with a few exceptions. Firstly, region growing was only run on a limited
subsection of the images from all datasets, and is thus not included in the results
tables. Secondly, thresholding was not run on the Weizmann 2 dataset, as it is
designed to segment into precisely two segments, not the three that that dataset
wants. Lastly, thresholding’s results on the Berkeley dataset were only evaluated
with Jaccard, not BDE. When scoring our segmentations for the Weizmann
dataset, which included multiple ground truths for each image, we took only the
best score, as there might possibly be multiple valid segmentations, one of which
our algorithm finds, and we shouldn’t penalize it for not being able to match
multiple, potentially highly variable, ground truths.

When evaluated with the BDE metric, we notice relatively close results across
our different algorithms. For each algorithm that was run on all three datasets,
it scores best on the Weizmann 2 images. This is possible because the Weizmann
images are simpler than the Berkeley ones, making them easier to segment, while
the tendency of some algorithms to over segment makes them score worse on an
image with only two ground truth segments. Overall, kmeans, split and merge,
mincut, and thresholding perform very similarly, while watershed does a little

20 A Comparison of Image Segmentation Algorithms

worse. Mincut also has a much smaller distribution of scores across different
images.

Fig. 11. BDE scores by dataset

Fig. 12. Jaccard scores by dataset

When evaluated with our Jaccard metric, we get very different results. Me-
dian scores range from 4% to 85% across different algorithms and datasets. No-
tably, watershed now performs the best across all datasets, with the exception
of thresholding on Weizmann 1 (Understandably, as thresholding specializes in
splitting an image into exactly two segments). Other noticeable changes from
the BDE scores include Split and Merge’s much worse performance, and the
amount that mincut’s scores change across datasets (though it still has very
uniform results within a dataset). Evaluated based on region rather than edges,

A Comparison of Image Segmentation Algorithms 21

Weizmann 1 seems to be easier to segment for most algorithms, possibly due to
region based evaluation penalizing over-segmentation less.

Fig. 13. Berkeley BDE scores for all algorithms sorted relative to k-means scores.

Also interesting is to compare our algorithms on an image-per-image basis.
When sorted by the BDE score on the kmeans algorithm, the graph for the
berkeley dataset shows a noticeable trend in the two out of the other three algo-
rithms matching with kmeans. Mincut and split and merge tend to do similarly
to kmeans on the same images, while watershed does worse overall, and has more
variance, but still trends in the same direction as the other three. This pattern is
also present, to a lesser extent, in the Weizmann results when scored with BDE,
but noticeable absent for all datasets when scored with Jaccard.

Lastly, because we saw trends in data varying significantly based on which
evaluation metric was used, we looked at overall scores for both at once. Un-
fortunately, there doesn’t seem to be any relation between which segmentations
are considered good by the two metrics.

Fig. 14. BDE scores plotted against Jaccard scores for all algorithms on Berkeley.

22 A Comparison of Image Segmentation Algorithms

6 Conclusion

When comparing the ultimate performance of all of our algorithms, it can be
quite hard to draw conclusions as to which algorithm performed the best. For
example, in our comparison of BDE scores, it would be easy to conclude that
within each margin of error each algorithm performs roughly the same, with
each encountering additional difficulty with the Weizmann dataset the bulk of
results remaining in a rough BDE score of 5-15. However, the results for the
Jaccard metric are far more varied, which might lead one to believe that this
metric would be the better gauge of accuracy for our metrics. From the BDE and
Jaccard data, we can deduce that split and merge and min cut fare quite poorly
on Jaccard, while watershed and threshold maintain their accuracy across both
metrics. However, further examination shows that almost all of the algorithms
fared poorly when evaluating their results on the Berkeley Dataset using Jaccard;
a dataset that contains a far greater degree of natural images, not to also mention
a far more robust means of creating ground truths. We also have to take into
account the large distribution of values for all the metrics minus min cut. It
would be difficult to justify that an algorithm works well if it only delivers its
most accurate results for only a few select images.

While this data does not clearly define which algorithm is the best, we can
draw a few conclusions from the data about these algorithms. For one, all of
these algorithms perform decently to excellently at creating boundaries going
off of the data from BDE, but only a few algorithms, namely thresholding, on
certain datasets produce the full regions that are consistent with the ground
truths, as indicated by the data in Jaccard. It can also be concluded that none
of these metrics perform optimally on large, natural images like the ones found
in the Berkeley dataset.

There are of course a few technical flaws as well. Our min cut and split and
merge algorithms have not been completely implemented correctly, given time
constraints, and this certainly will impact our results. We also do not have a good
sense of how well region growing performed compared to the other algorithms,
and that could change much of our perspective on these results. Given the data
we do have, region growing appears to do quite well on all datasets, doing espe-
cially well on Berkeley in terms of Jaccard score compared to other algorithms.
However, because of the limited tests we were able to run, this average may not
be comparable to the data we have for our other algorithms. There should also
be some acknowledgement granted to the difficulty of comparing BDE scores,
given that unlike Jaccard, it is not immediately obvious what would be the the-
oretical maximum BDE score; this can make definitions of which BDE scores
are poor simply a matter of comparison to other scores, not necessarily whether
they produce an unacceptable or acceptable segmentation.

Future tests could take a variety of forms. One approach would be a combined
test of algorithms, where we test algorithms run one after the other in order to
enhance a segmentation. This research would be beneficial as it is possible that
because these algorithms seem quite specialized, that perhaps what is necessary

A Comparison of Image Segmentation Algorithms 23

to make them more flexible is to use other algorithms to create a ”source” image
(a basic segmentation) to enhance accuracy.

Additionally, many of our algorithms have multiple different parameters that
can be tuned. While often we decided on fixed, random, or somewhat arbitrary
values in the interest of time, experimenting with fine-tuning these parameters
could make a big difference in the effectiveness of these algorithms in general, or
in segmenting particular difficult images.

In summary, while some of these algorithms have clear strengths in the con-
text of certain metrics, such as with thresholding and watershed on Jaccard
scores, and most algorithms in BDE, there is not a conclusively “best” algorithm.
The best answer is that having all of these algorithms and more to attempt on a
given image would be the ideal approach, due to the high variance of scores on
the variety of images and metrics employed. The process of image segmentation
is a fascinating and difficult one, and it comes as little surprise that a varied
toolkit is important to making it work.

24 A Comparison of Image Segmentation Algorithms

References

1. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by prob-
abilistic bottom-up aggregation and cue integration. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (06 2007),
http://www.wisdom.weizmann.ac.il/ vision/Seg Evaluation DB/index.html

2. Beucher, S.: The watershed transformation applied to image segmentation. Scan-
ning Microscopy Supplement pp. 299–314 (01 1992)

3. Blunt, L., Jiang, X.: Advanced Techniques for Assessment Surface Topography:
Development of a Basis for 3D Surface Texture Standards ”Surfstand”. Elsevier
Science (2003), https://books.google.com/books?id=H4-dIu4IbscC

4. Chauhan, N.S.: Understanding k-means clustering in machine learning (07
2019), https://towardsdatascience.com/introduction-to-image-segmentation-with-
k-means-clustering-83fd0a9e2fc3

5. Dingding Liu, Bilge Soran, G.P.L.S.: A review of computer vision segmentation
algorithms

6. Erwin Saparudin, Adam Nevriyanto, D.P.: Performance anal-
ysis of comparison between region growing, adaptive thresh-
old and watershed methods for image segmentation (03 2018),
http://www.iaeng.org/publication/IMECS2018/IMECS2018 pp157-163.pdf

7. Frank Y. Shih, S.C.: Automatic seeded region growing for color im-
age segmentation. Image and Vision Computing 23, 877–886 (05 2005),
https://www.sciencedirect.com/science/article/pii/S0167865504003150

8. Gabriela Csurka, Diane Larlus, F.P.: What is a good evaluation measure for se-
mantic segmentation? (2013)

9. Garbade, D.M.J.: Understanding k-means clustering in machine learning
(09 2018), https://towardsdatascience.com/understanding-k-means-clustering-in-
machine-learning-6a6e67336aa1

10. Ioannis N. Manousakas, Peter E. Undrill, G.G.C.T.W.R.: Split-and-merge segmen-
tation of magnetic resonsnace medical images: Performance evaluation and exten-
sion to three dimensions. Computers and Biomedical Research, Elsevier (1998)

11. Jianping Fan, Guihua Zeng, M.B.M.S.H.: Seeded region growing: an exten-
sive and comparative study. Pattern Recognition Letters 26(6) (06 2005),
https://www.sciencedirect.com/science/article/pii/S0167865504003150

12. Kraj́ıček, V.: Segmentation algorithms
13. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision. vol. 2, pp. 416–423
(07 2001)

14. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms, vol. 9 (01
1979)

15. Rajesh Gothwal, Deepak Gupta, S.G.: An advance approach
to select initial seed pixel using edge detection. Interna-
tional Journal of Computer Applications 75(08) (08 2013),
https://pdfs.semanticscholar.org/2b17/dfa0c9ad4dc5787842e52dc94f9d2f096f9d.pdf

16. Rolf Adams, L.B.: Seeded region growing. IEEE Transaction
on Pattern Analysis and Machine Intelligence 16(6) (06 1994),
https://pdfs.semanticscholar.org/db44/31b2a552d0f3d250df38b2c60959f404536f.pdf

17. Seemeen Karimi, Xiaoqian Jiang, P.C.H.M.: Flexible methods for segmentation
evaluation: Results from ct-based luggage screening. J Xray Sci Technol 22, 175–
195 (2014)

A Comparison of Image Segmentation Algorithms 25

18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

19. Shilpa Kamdi, R.: Image segmentation and region growing algorithm. International
Journal of Computer Technology and Electronics Engineering (IJCTEE) 2(1),
https://pdfs.semanticscholar.org/2eb3/08f618a26faf8f5d194a842b325aca13722c.pdf

20. Steven Horowitz, T.P.: Picture segmentation by a tree traversal algorithm. Journal
of the Association for Computing Machinery 23, 368–388 (1976)

21. Ville Satopa, Jeannie Albrecht, D.I.B.R.: Finding a “kneedle” in a haystack: De-
tecting knee points in system behavior

22. Wang, X.: Graph based approaches for image segmentation and object tracking
(2015)

23. Xin Zheng, Qinyi Lei, R.Y.Y.G., Yin, Q.: Understanding k-means clustering in
machine learning (08 2018), https://doi.org/10.1186/s13640-018-0309-3

