(Supplementary Material) Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language

Seonghyeon Nam, Yunji Kim, and Seon Joo Kim
Yonsei University
\{shnnam,kim_yunji,seonjookim\}@yonsei.ac.kr

1 Additional Experimental Results

In this supplementary material, we show additional results of our method. Fig. 1 and Fig. 2 show qualitative comparison on CUB and Oxford-102 datasets, and Fig. 3 and Fig. 4 show additional qualitative results of our method.

2 Network Architecture

Table 1 and 2 show the hyperparameters of the proposed network. For the conditional discriminator, we added additional 3×3 convolution layers to conv3, conv4, and conv5 layers in the unconditional discriminator. Then, the features from those layers are spatially reduced by global average pooling and classified by local discriminators. The parameters of each local discriminator is generated from each word vector of the RNN. (Conv2d(K, P): 2D convolution with the kernel size K and the padding P, BN: Batch normalization, LeakyReLU(S): LeakyReLU with the negative slope S, NN Upsampling: Nearest neighbor upsampling)

References

[1] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas, "Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks," in ICCV, 2017.
[2] H. Dong, S. Yu, C. Wu, and Y. Guo, "Semantic image synthesis via adversarial learning," in ICCV, Oct 2017.
[3] Q. H. H. Z. Z. G. X. H. X. H. Tao Xu, Pengchuan Zhang, "Attngan: Fine-grained text to image generation with attentional generative adversarial networks," in CVPR, 2018.

Table 1: The parameters of the generator.

Module	Layers	Input size	Output size
Text Encoder	Bidirectional GRU	\# of words $\times 300$	\# of words $\times 512$
	Temporal Averaging	\# of words $\times 512$	512
	Linear, LeakyReLU(0.2)	512	256
(a)	Conditioning Augmentation [1]	256	128
Image Encoder	Conv2d(3, 1), ReLU	$3 \times 128 \times 128$	$64 \times 128 \times 128$
	Conv2d(4, 2), BN, ReLU	$64 \times 128 \times 128$	$128 \times 64 \times 64$
	Conv2d(4, 2), BN, ReLU	$128 \times 64 \times 64$	$256 \times 32 \times 32$
(b)	Conv2d(4, 2), BN, ReLU	$256 \times 32 \times 32$	$512 \times 16 \times 16$
Concat (a) and (b)	Conv2d(3, 1), BN, ReLU	$640 \times 16 \times 16$	$512 \times 16 \times 16$
Residual Blocks	4 \times Residual Block (below)	$512 \times 16 \times 16$	$512 \times 16 \times 16$
Residual Block	Conv2d(3, 1), BN, ReLU	$512 \times 16 \times 16$	$512 \times 16 \times 16$
(c)	Conv2d(3, 1), BN	$512 \times 16 \times 16$	$512 \times 16 \times 16$
	Input + (c)	$512 \times 16 \times 16$	$512 \times 16 \times 16$
Decoder	NN Upsampling (2×)	$512 \times 16 \times 16$	$512 \times 32 \times 32$
	Conv2d(3, 1), BN, ReLU	$512 \times 32 \times 32$	$256 \times 32 \times 32$
	NN Upsampling ($2 \times$)	$256 \times 32 \times 32$	$256 \times 64 \times 64$
	Conv2d(3, 1), BN, ReLU	$256 \times 64 \times 64$	$128 \times 64 \times 64$
	NN Upsampling ($2 \times$)	$128 \times 64 \times 64$	$128 \times 128 \times 128$
	Conv2d(3, 1), BN, ReLU	$128 \times 128 \times 128$	$64 \times 128 \times 128$
	Conv2d(3, 1), Tanh	$64 \times 128 \times 128$	$3 \times 128 \times 128$

Table 2: The parameters of the discriminator.

Module	Layers	Input size	Output size
Image Encoder	Conv2d(4, 2), LeakyReLU(0.2)	$3 \times 128 \times 128$	$64 \times 64 \times 64$
	Conv2d(4, 2), BN, LeakyReLU(0.2)	$64 \times 64 \times 64$	$128 \times 32 \times 32$
conv3	Conv2d(4, 2), BN, LeakyReLU(0.2)	$128 \times 32 \times 32$	$256 \times 16 \times 16$
conv4	Conv2d(4, 2), BN, LeakyReLU(0.2)	$256 \times 16 \times 16$	$512 \times 8 \times 8$
conv5	Conv2d(4, 2), BN, LeakyReLU(0.2)	$512 \times 8 \times 8$	$512 \times 4 \times 4$
Unconditional			
Discriminator	Conv2d(4, 0), Softmax	$512 \times 4 \times 4$	$1 \times 1 \times 1$
Text Encoder	Bidirectional GRU	\# of words $\times 300$	\# of words $\times 512$
$\beta_{i j}$	Linear, Softmax	\# of words $\times 512$	\# of words $\times 3$
α_{i}	See Eq. (3) in the paper	\# of words $\times 512$	\# of words $\times 1$
$f_{\mathbf{w}_{i}, j}$	Linear (See Eq. (2) in the paper)	N/A	N/A
From conv3	Conv2d(3, 1), BN, LeakyReLU(0.2)	$256 \times 16 \times 16$	$256 \times 16 \times 16$
(a)	Global Average Pooling	$256 \times 16 \times 16$	$256 \times 1 \times 1$
From conv4	Conv2d(3, 1), BN, LeakyReLU(0.2)	$512 \times 8 \times 8$	$512 \times 8 \times 8$
(b)	Global Average Pooling	$512 \times 8 \times 8$	$512 \times 1 \times 1$
From conv5	Conv2d(3, 1), BN, LeakyReLU(0.2)	$512 \times 4 \times 4$	$512 \times 4 \times 4$
(c)	Global Average Pooling	$512 \times 4 \times 4$	$512 \times 1 \times 1$
Conditional	See Eq. (5) in the paper		
Discriminator	with $\left(\alpha_{i}, \beta_{i j}, f_{\mathbf{w}_{i}, j},(a),(b),(c)\right)$	N / A	$1 \times 1 \times 1$

This bird has wings that are black and white and has a red tinted face.
Original

SISGAN [2]

This is a black bird with gray and white wings and a bright yellow belly and chest.

Original

SISGAN [2]

This bird has wings that are brown and has a white belly.

Figure 1: Qualitative comparison on CUB dataset.

This flower has orange petals that has yellow shading in the center.

This flower has petals that are white and has patches of yellow.

This flower is pink, white, and yellow in color, and has petals that are multi colored.

Original

SISGAN [2]

AttnGAN [3]

Ours

Figure 2: Qualitative comparison on Oxford-102 dataset.

Original

This bird has wings that are brown and has a white belly.

The bird has mostly blue plumage with streaks of dark grey on the wings and tail

This bird has wings that are grey and has a white belly.

This bird has wings that are grey and has a yellow belly.

Original

A small bird with brown and black feathers, white belly, white eyering, and a small brown beak.

A small black and white bird with a long tail, long black legs, a white belly, a small head, and a short pointy beak.

This bird is red with blue and has a long, pointy beak.

This is a small bird with a white belly, a black and white spotted back and a pointed beak.

This bird has a black body with an orange beak.

Figure 3: Additional qualitative results of our method on CUB dataset.

This flower is white and yellow in color, with oval shaped petals.
 are pink and has yellow stamen.

Original

This flower has white petals with a splash of red coloring in the middle of each one.

The petals on this flower are white with yellow stamen.

This flower is yellow and brown in color, with petals that are oval shaped.

This flower has petals that are pink and has yellow stamen

This flower has petals that are white and has a peach style.

Figure 4: Additional qualitative results of our method on Oxford-102 dataset.

