
Text-Adaptive Generative Adversarial Networks

Emma Qin, Will Schwarzer, Kyra Wilson, Orlando Zuniga

October 16, 2019

Contents

1 Literature Review 1
1.1 Network Architecture . 1

1.1.1 Generator . 2
1.1.2 Discriminator . 3

1.2 Datasets . 5

2 Goals 5

3 Timeline and Role Breakdown 6

1 Literature Review

Image synthesis is a difficult problem in computer vision, but the use of Generative Adversarial Networks (GAN)
has led to great progress being made towards generating realistic images [1]. GANs typically consist of a generator,
which is able to generate images, and a discriminator, which is able to discern whether an image is real or made by
a computer. These two parts of the network typically work against each other, with the generator trying to make
more and more accurate images to fool the discriminator and the Discriminator trying to get better and better at
predicting what kinds of images are real or not.

In their basic form, the images generated by GANs are not conditioned on any information other than random
noise: the generator simply takes in a random noise vector as input, and generates a random image as output [1].
This means that the user is unable to control in any way what kind of image a GAN generates, aside from modify-
ing the training data. Given this limitation, one of the most exciting extensions of the classical GAN paradigm is
conditional GANs [1, 2], where the generator is instead given some input vector y as a starting point for its image
generation, which could be anything from a class label for the image to be generated [2] to a free-form natural
language description of the image [3]. When the discriminator is judging any given image, it then also learns to
judge how well the image matches the condition it is associated with, based on the condition/image pairs in the
training data. The feedback thus produced by the discriminator allows the generator to generate images that are
not only lifelike, but also accurately depict the given input.

The problem that we propose working on in this project is a slight modification of this problem of generating
images that correspond to natural language inputs: specifically, we propose instead modifying preexisting images
in order to match a new text description that we supply. To do this, we will still feed in the text description to both
the generator and the discriminator, and allow the discriminator to judge the generated images based on how well
they match the description; however, we will also input a real image to the generator for it to base its generated
image on. This approach is the subject of the paper we’re replicating [4], as well as several previous papers.

1.1 Network Architecture

One proposed model for achieving natural language image modification is the Semantic Image Synthesis GAN
(SISGAN) [5]. The SISGAN architecture is as follows: the generator consists of an encoder, a series of residual block

1

transformation units, and a decoder; the Discriminator consists of multiple convolutional layers which create
image feature representations of a desired size and then predict the authenticity and correctness of an image and
its text description. The network that we will be replicating in this project, the Text-Adaptive GAN[4], uses a slightly
modified version of this generator, as well as a significantly modified discriminator.

Figure 1: The network architecture used in [4].

1.1.1 Generator

In the generator, the encoder is used to make vectorized representations of images and natural language text de-
scriptions. For images, this is done using a convolutional neural network (CNN), while text encoding is done
using a bidirectional GRU (gated recurrent unit, a type of recurrent neural network (RNN)). In SISGAN, the RNN
is pretrained before being used with the data of interest, but the TAGAN RNN is trained from scratch, though its
embeddings are supplemented with pretrained embeddings from fastText [6]. While the authors of [4] do not state
why they chose not to pretrain their RNN as was done in previous studies, we hypothesize that one possible reason
for this is that the language used in the image captions is specialized enough that pretraining the neural network
on more general natural language may not provide any benefit for the task at hand, and may even worsen its per-
formance.

Another alteration made for text encoding with TAGAN is that conditioning augmentation [7] is used in order
to generate more text-image pairs and minimize any outlying data in the training set. Conditioning augmentation
uses a similar principle to variational autoencoders (VAEs): rather than encoding each raw data point to the same
vector every time, the data are instead first encoded into vectors of normal distributions, from which individual
representations are then sampled. This serves to “smush” the representations out to fill more of the representa-
tional space, forcing the generator to process textual inputs more flexibly, thereby allowing it to interpolate to novel
sentences more easily.

Once both the image and the text have been encoded, the encodings are concatenated to create a visual-
semantic text representation to be used as input for the residual blocks. These blocks, which are the part of the
generator that actually modifies the image representation to match the language representation, are sets of stan-
dard multilayer perceptrons (MLPs, aka basic feedforward neural networks) with one particular quirk: each resid-
ual block saves the input vector it is given, and adds it to the output vector that it produces. This means that what
each residual block is actually learning is the difference (residual) between the input and the output - i.e. the mod-
ification to be made to the input. The authors in Dong et al., 2017 [5], who also used residual blocks, assume that
this will allow the generator to more easily keep description-irrelevant parts of the image, such as the background,
unmodified.

Finally, the decoder returns the latent feature representation to an image of the desired size by passing it
through several upsampling layers. A batch of such generated images is then passed to the discriminator, which

2

determines the validity of the images (whether or not they’re real, and whether or not they match their descrip-
tions); in the same epoch, a batch of real images is similarly given to the discriminator for validity checking.

1.1.2 Discriminator

In its basic structure, the discriminator used in this paper parallels that of Dong et al., 2017 [5]. Like all GANs,
part of the discriminator is unconditional, i.e. it ignores the natural language descriptions of each image: it simply
encodes the image (using a CNN, like the generator) and classifies it as either real or fake. However, like all con-
ditional GANs, it also has a conditional (or “text-adaptive”) part to it, which classifies whether or not the image
accurately depicts the description associated with it. This is where the GAN architecture employed by this paper
diverges most significantly from previous work. Whereas Dong et al., 2017 [5] simply encode the description as a
whole, then ask the discriminator to classify the combined image and text representations, this paper uses a much
more complicated word-level discriminator.

The basic idea behind this word-level discriminator is to consider each individual word of the description,
determining the semantic fit between each word and the image in question. To do this, the paper uses a local
discriminator, which takes in an image representation and a word representation as input, and returns a value
representing whether or not the word in question (for example, “brown”, or “bird”) appears to be present in the
image; this local discriminator is then used on the image with each individual word of the description, and the
results of each of these trials are added together to determine the overall match between the image and the de-
scription. The goal of this finer-grained discriminator is to provide the generator with more precise feedback:
rather than only being able to backpropagate the information that a given bird did not match its description, the
word-level discriminator will be able to tell generator that the bird was not sufficiently black, or that its beak was
too long.

That said, the above description glossed over a few details. First, the results of each local discrimination test
are not just added together to get the overall result; instead, the network uses an attentional system to add together
these results, allowing it to place more weight on words that it has learned are important. (For example, perhaps
it has learned that it should really pay attention to whether or not the image matches the word “brown”, but the
word “the” tends to convey less information.) This turns the overall discrimination score into a weighted sum of
the invidividual tests, where the weight for each word’s local test is learned over time.

In addition, there is a bit of finesse in the exact image representations that the local discriminator takes as in-
put: in fact, there are three different local discriminators, each taking in a different type of image representation!
These different image representations represent different levels of detail in the image: “conv3” is the finest-grained
(i.e. highest-dimensional), while “conv5” is the coarsest. These odd names stem from the details of how the repre-
sentations are created by the network’s CNN.

CNNs generally produce low-dimensional image representations from high-dimensional images by separating
blocks of convolutional (sparsely connected) layers with pooling layers, which compress the dimensionality of
the representation - often by a factor of 2 each time. (Specifically, they usually compress the width and height
dimensions of the representation, while increasing its depth.) Thus, if conv3 is the last convolutional layer of the
third convolutional block of the CNN, and if the image representation at this point has dimension (w, h, d), conv4
might have dimension (w/2, h/2, 2d), and conv5 would be (w/4, h/4, 4d). Generally, a CNN feeds an image through
all of its convolutional blocks, before using several dense layers at the end to compress the representation fully to
the desired size. However, you can also short-circuit the full process by instead converting the results of each
convolutional block directly to a (1, 1,) representation. This is done using global average pooling (GAP), where
the values of each (w, h) slice of the representation are averaged together to get a single number, turning the (w, h,
d) representation in conv3 into a (1, 1, d) representation, while conv4 and conv5 produce (1, 1, 2d) and (1, 1, 4d)
representations, respectively[8]. Since CNNs generally produce more and more coarse-grained representations
while moving through their layers, it is reasonable to assume that the representation taken from conv3 will have
the best low-level detail, while conv5 will be a more high-level representation of the image, as desired. The authors
confirm this in the ablation study shown in Figure 2.

Once these different representations have been produced from the CNN, each of them is fed into its own cor-
responding local discriminator. This discriminator then attempts to determine whether or not the image at that
particular scale matches the given word well: for example, conv3 might work well for determining whether or

3

Figure 2: Results of only using certain image representations in the discriminator.

not a flower’s petals are indeed “stringy”, while conv5 might be good at determining whether or not the flower is
purple. The results of these three local discriminators are then summed together attentionally, the final result of
which is used as the value of the overall local discrimination test for that individual word. Once the discriminator
has determined the total word-level fit of the description and the image, feedback on both the conditional and
unconditional scores is provided to the generator, to allow it to produce more realistic and text-accurate images,
while the discriminator receives feedback on whether or not the image was correctly classified as being real/fake
and matching/not matching the description. The authors of the present paper show that their enhancements, es-
pecially (they claim) the word-level discriminator, result in significantly more accurate and natural (i.e. precise)
image modification, as shown in Figure 2.

Figure 3: Qualitative results of the three methods.

4

1.2 Datasets

The datasets used to train and test TAGAN are CUB[9] and Oxford-102[10] datasets. These are both fairly standard
and commonly used image datasets for machine learning tasks and in particular the predecessors of TAGAN[5].
For this project, we have chosen to focus on replicating the results using CUB as our primary goal, so further
discussion of datasets is limited to that one. The CUB dataset includes 11,788 images of birds in 200 different cat-
egories, as well as annotations containing 15 part locations, 312 binary attributes, and 1 bounding box for each
image. Because this paper aims to alter images based on descriptions that are natural language rather than sets of
features, the CUB dataset must also be supplemented with natural language captions. The captions the authors
used (which we also intend to utilize) were created for a different investigation which also employed CUB and
Oxford-102 datasets[3]. These researchers created 10 natural language captions for each image in the dataset ac-
cording to the annotated features in CUB. The annotated images and text are then used as inputs for the generator.
In our replication, 80% of the data will be devoted to training and 20% will be devoted to testing. Furthermore, the
authors of both the present paper and Dong et al., 2017 used standard data augmentation techniques for images,
namely, cropping, rotation, and flipping, which we will also replicate.

2 Goals

Our major goal of this project is to recreate GAN structure, which includes generator and discriminator, and use
the recreated GAN structure to modify and produce images according to text input. Due to time limitation, we will
first focus on CUB dataset[9], and extend to Oxford-102 dataset[10] later. There are several measures used to test
the performance of GAN, and in this project we will first focus on the L2 error. L2 error stands for Least Square
Errors. It is used to minimize the error which is the sum of all the squared differences between the true value and
the predicted value.

L2 =
n∑

i=1
(ytr ue − ypr edi cted)2.

Besides minimizing L2 error in the project, we will try to replicate the result of the original paper on CUB dataset[9],
shown in Figure 4, which is giving an image and annotation on birds, modifying the original image without chang-
ing the background of the original image.

Figure 4: Qualitative results of GAN on CUB dataset.

Given enough time, our primary reach goal would be to compare our GAN approach to the two baseline
methods (AttnGan and SISGAN). AttnGAN is an Attentional Generative Adversarial Network (AttnGAN) that allows
attention-driven, multi-stage refinement for fine-grained text-to-image generation [11]. In other words, AttnGAN
can synthesize fine-grained details at different sub-regions of the image by paying attentions to the relevant words
in the natural language description [11]. We would start by getting the L2 error for each approach and comparing

5

it to ours. When we compare all three methods, the results should show that TAGAN outperforms the two baseline
methods. Our results should also show that SISGAN and AttnGAN have similar performance based on their L2

error. In addition to this, we would also like to compare the qualitative results for the three methods as seen in
Figure 3.

Our second reach goal would be to use the Oxford-102 dataset [10] that contains the flower images. We would
measure L2 error for each approach and compare it to ours. The TAGAN approach should show a lower L2 error in
this dataset than the two baseline methods.

Our last reach goal would be to conduct a human evaluation on Amazon Mechanical Turk to gather quantitative
results that measure the three GAN methods based on accuracy and naturalness [4]. This user study requires that
we randomly select 10 images and 10 texts from the test set and produce 200 outputs from the dataset for each
method. All output images would be resized to 64x64 to prevent the users from evaluating based on sharpness.
The workers would then evaluate the images based on two criteria: whether the visual attributes (colors, textures)
of the manipulated image match the test, and the background is preserved and whether the manipulated image
looks natural and visually pleasing. We would then present each criterion as a score of accuracy and naturalness,
where the lower number is better. This user study should conclude that the TAGAN method has a higher accuracy
and naturalness score than the two baseline methods.

3 Timeline and Role Breakdown

First and foremost, here is the timeline of work distribution in Fall term. All the work listed in the table should be
done by the beginning of the listed week.

Week # Emma Will Kyra Orlando

5
Setup libraries,

finish project proposal
Setup libraries,

finish project proposal

Get datasets,
setup libraries,

finish project proposal

Setup libraries,
finish project proposal

6 Look at GitHub for SISGAN, make any alterations to the proposal if needed

7 Image-decoder Main
Making train and test

splits,figuring out how
to load them w/ PyTorch

Image-encoder

8 Plan for discriminator Residual blocks Text-encoder
Connect encoder

and decoder/testing

9
“Good” progress on networks (encoders, decoders (generator), discriminator),

“working-proof of concept complete”, everyone focus on integrating parts of generator network

10 Prep for short presentation

Then, winter term timeline is more general, because the group will focus on the discriminator and general
testing in winter term, which will be determined later this term.

Week # Goal

1-3
3 people on Discriminator, 1 on reproducing SISGAN and AttnGAN
as long as Emma still thinks its a good plan after 8th week Fall term

4-5 Network done and training finished, start running experiments, start presentation
6 Reproduce L2 error and Figure 3
7 Reach goals (potentially), run with flower data set (potentially), practice presentation for Anna
8 Entire network done, run some of the experiments

6

References

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.
Generative adversarial nets. In Proceedings of NIPS, pages 2672– 2680, 2014.

[2] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[3] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial text-to-image synthe-
sis,” in ICML, 2016.

[4] S. Nam, Y. Kim, and S. J. Kim. Text-adaptive generative adversarial networks: manipulating images with natural
language. In Advances in Neural Information Processing Systems, pages 42–51, 2018.

[5] H. Dong, S. Yu, C. Wu, and Y. Guo, “Semantic image synthesis via adversarial learning,” in ICCV, Oct 2017.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,” arXiv
preprint arXiv:1607.04606, 2016.

[7] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas, “Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks,” in ICCV, 2017.

[8] A. Cook. (2017). Global Average Pooling Layers for Object Localization. [Blog] Available at:
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/ [Accessed 16 Oct.
2019].

[9] C. Wah, S. Branson, P.Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD Birds-200-2011 Dataset,” Tech.
Rep. CNS-TR-2011-001, California Institute of Technology, 2011.

[10] M.E. Nilsback and A. Zisserman, “Automated flower classification over a large number of classes,” in ICCVGIP,
Dec 2008.

[11] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. (2018). “Attngan: Fine-grained text to image
generation with attentional generative adversarial networks,” in Conference on Computer Vision and Pattern
Recognition.

7

