
Slithering the Link

David Anderson, Dan Hamalainen, Edward Kwiatkowski,
Valerie Lambert, Sam Spaeth

Carleton College Department of Computer Science

March 12, 2016



Roadmap

What is a Slitherlink Puzzle?

How to Define a Slitherlink Puzzle

How to Solve a Slitherlink Puzzle

How to Make a Slitherlink Puzzle



What is Slitherlink?

Logic puzzle developed by Nikoli
Played on:

I a rectangular lattice of dots, creating ”cells”

I with some cells containing numbers



What is Slitherlink?

Objective of the game is to create a single loop throughout the
puzzle where:

I the final solution is a
continuous line that
does not cross itself

I each numbered cell
corresponds to the
number of solution
lines around it

I the puzzle should have
ONLY ONE unique
solution



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle

Conceptis Puzzles Slitherlink Techniques



Solving a Slitherlink Puzzle

Conceptis Puzzles Slitherlink Techniques



Solving a Slitherlink Puzzle

Conceptis Puzzles Slitherlink Techniques



Solving a Slitherlink Puzzle

Conceptis Puzzles Slitherlink Techniques



Solving a Slitherlink Puzzle

Conceptis Puzzles Slitherlink Techniques



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle

Solving a Slitherlink puzzle is an NP-complete problem, as well as
determining if there are multiple solutions.

On the NP-completeness of the Slither Link Puzzle Takayuki YATO



Puzzle Representation

Components of a puzzle:
I the grid

I lines
I numbers

I rules and contradictions

I contours

I what it means to be solved



The Grid

M by N grid has 3 2D arrays:

I M by N 2D array for numbers; values 0 to 3 or empty

I M + 1 by N 2D array for horizontal lines; values line, x, or
empty

I M by N + 1 2D array for vertical lines; values line, x, or empty

A rule-based approach to the puzzle of Slither Link. Stefan
Herting.





Rules and Contradictions

Each rule has:

I dimensions

I prerequisites

I consequences

Each contradiction has:

I dimensions

I prerequisities



Examples of Rules



Static Rules

Static rules are rules that do not contain lines or x’s in their
prerequisites. We identified 3 static rules.



Rule and Contradiction in action

We chose to cover rules that are at most 3 by 3 in dimension, and
contradictions that are at most 2 by 2 in dimension.



Contours

I Use 2D array to keep track of contour endpoints.

I Update endpoints as we add lines.

I Keep track of the number of open and closed contours as we
add lines.

Table 1: Contour Endpoint Array

3,1 0,1

1,2 0,2 1,3

2,2

numClosed = 0
numOpen = 3



How Can We Tell Our Grid is Solved?

I Every number in the
grid is satisfied

I There is exactly one
closed loop, and no
open loops.



How Can We Tell Our Grid is Solved?

I Every number in the
grid is satisfied

I There is exactly one
closed loop, and no
open loops.



Applying Rules

I for every position in the grid...

I for every defined rule...
I for every orientation...

Do the prerequisites in the rule match where we’re looking at on
the grid?

I If so, add consequences to the grid.















Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules

2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules

3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids



Guessing

Method:

1. Find a particular open position

2. Guess that position is a Line

2.1 Run deterministic rules
2.2 If there’s a contradiction, we know the position is an X

3. Guess that position is an X

3.1 Run deterministic rules
3.2 If there’s a contradiction, we know the position is a Line

4. If neither results in a contradiction, take the intersection of
the two resulting grids











Recursive Guessing

If single guesses don’t result in anything, we can nest our guesses.
New information from nested guesses propagates out to the
canonical grid.

We call n nested guesses a ”depth n guess”.



Recursive Guessing

If single guesses don’t result in anything, we can nest our guesses.
New information from nested guesses propagates out to the
canonical grid.

We call n nested guesses a ”depth n guess”.



Example of a depth 2 guess

Grid



Example of a depth 2 guess

Grid

A



Example of a depth 2 guess

Grid

A

Line X



Example of a depth 2 guess

Grid

A

Line

B

Line X

X



Example of a depth 2 guess

Grid

A

Line

B

Line X

X

C

Line X



Example of a depth 2 guess

Grid

A

Line

B

Line

contradiction

X

X

C

Line X



Example of a depth 2 guess

Grid

A

Line

B

Line

contradiction

X

valid

X

C

Line X



Example of a depth 2 guess

Grid

A

Line

B

X

valid

X

C

Line X



Example of a depth 2 guess

Grid

A

Line

B

X

valid

X

C

Line

contradiction

X



Example of a depth 2 guess

Grid

A

Line

B

X

valid

X

C

Line

contradiction

X

contradiction



Example of a depth 2 guess

Grid

A

Line

B

X

valid

X

contradiction



Example of a depth 2 guess

Grid

A

Line

B

X



Repeated guessing algorithm

I If at any point new information is found, restart algorithm

I Run deterministic rules

I Run every possible guess (depth 1 guessing)

I Run every possible guess, and within each guess, make all
possible guesses (depth 2 guessing)

I · · ·



Repeated guessing algorithm

I If at any point new information is found, restart algorithm

I Run deterministic rules

I Run every possible guess (depth 1 guessing)

I Run every possible guess, and within each guess, make all
possible guesses (depth 2 guessing)

I · · ·



Repeated guessing algorithm

I If at any point new information is found, restart algorithm

I Run deterministic rules

I Run every possible guess (depth 1 guessing)

I Run every possible guess, and within each guess, make all
possible guesses (depth 2 guessing)

I · · ·



Repeated guessing algorithm

I If at any point new information is found, restart algorithm

I Run deterministic rules

I Run every possible guess (depth 1 guessing)

I Run every possible guess, and within each guess, make all
possible guesses (depth 2 guessing)

I · · ·



Repeated guessing algorithm

I If at any point new information is found, restart algorithm

I Run deterministic rules

I Run every possible guess (depth 1 guessing)

I Run every possible guess, and within each guess, make all
possible guesses (depth 2 guessing)

I · · ·



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Solving a Slitherlink Puzzle



Checking for Multiple Solutions

For every guess we made to get to the solution:

I Go back to the state of the grid before the guess was made,
and solve the corresponding grid with the opposite guess at
that same spot:

I If the opposite guess eventually leads to a contradiction, we
know that the original guess has to be true (given all previous
guesses). Continue to check other guesses.

I If the opposite guess eventually leads to one or more solutions,
then we know that this grid has more than one solution.

If the opposite of every guess we had to make leads to a
contradiction, then we know that the original solution we found is
the only one.



Checking for Multiple Solutions

For every guess we made to get to the solution:
I Go back to the state of the grid before the guess was made,

and solve the corresponding grid with the opposite guess at
that same spot:

I If the opposite guess eventually leads to a contradiction, we
know that the original guess has to be true (given all previous
guesses). Continue to check other guesses.

I If the opposite guess eventually leads to one or more solutions,
then we know that this grid has more than one solution.

If the opposite of every guess we had to make leads to a
contradiction, then we know that the original solution we found is
the only one.



Checking for Multiple Solutions

For every guess we made to get to the solution:
I Go back to the state of the grid before the guess was made,

and solve the corresponding grid with the opposite guess at
that same spot:

I If the opposite guess eventually leads to a contradiction, we
know that the original guess has to be true (given all previous
guesses). Continue to check other guesses.

I If the opposite guess eventually leads to one or more solutions,
then we know that this grid has more than one solution.

If the opposite of every guess we had to make leads to a
contradiction, then we know that the original solution we found is
the only one.



Checking for Multiple Solutions

For every guess we made to get to the solution:
I Go back to the state of the grid before the guess was made,

and solve the corresponding grid with the opposite guess at
that same spot:

I If the opposite guess eventually leads to a contradiction, we
know that the original guess has to be true (given all previous
guesses). Continue to check other guesses.

I If the opposite guess eventually leads to one or more solutions,
then we know that this grid has more than one solution.

If the opposite of every guess we had to make leads to a
contradiction, then we know that the original solution we found is
the only one.



Checking for Multiple Solutions

For every guess we made to get to the solution:
I Go back to the state of the grid before the guess was made,

and solve the corresponding grid with the opposite guess at
that same spot:

I If the opposite guess eventually leads to a contradiction, we
know that the original guess has to be true (given all previous
guesses). Continue to check other guesses.

I If the opposite guess eventually leads to one or more solutions,
then we know that this grid has more than one solution.

If the opposite of every guess we had to make leads to a
contradiction, then we know that the original solution we found is
the only one.



Checking for Multiple Solutions

For every guess we made to get to the solution:
I Go back to the state of the grid before the guess was made,

and solve the corresponding grid with the opposite guess at
that same spot:

I If the opposite guess eventually leads to a contradiction, we
know that the original guess has to be true (given all previous
guesses). Continue to check other guesses.

I If the opposite guess eventually leads to one or more solutions,
then we know that this grid has more than one solution.

If the opposite of every guess we had to make leads to a
contradiction, then we know that the original solution we found is
the only one.



Checking for Multiple Solutions



Checking for Multiple Solutions



Checking for Multiple Solutions



Checking for Multiple Solutions



Time Complexity

Important details:

I For each depth, O(mn) new guesses, each taking O(mn) time
to instantiate

I Guessing at the max depth is by far the most important factor
in runtime

I We can maximize this by never filling anything in at lower
depths



Time Complexity

Important details:

I For each depth, O(mn) new guesses, each taking O(mn) time
to instantiate

I Guessing at the max depth is by far the most important factor
in runtime

I We can maximize this by never filling anything in at lower
depths



Time Complexity

Important details:

I For each depth, O(mn) new guesses, each taking O(mn) time
to instantiate

I Guessing at the max depth is by far the most important factor
in runtime

I We can maximize this by never filling anything in at lower
depths



Time Complexity

Important details:

I For each depth, O(mn) new guesses, each taking O(mn) time
to instantiate

I Guessing at the max depth is by far the most important factor
in runtime

I We can maximize this by never filling anything in at lower
depths



Time Complexity

Overall runtime O((mn)d) with d bounded above by O(mn)

Table 2: Empty grid completion time

Size Max Depth Time (sec)
3x3 0 0.001111
3x3 1 0.033743
3x3 2 1.19998
3x3 3 57.2004
3x3 4 2587.52



Empirical Results: Typical Puzzles

Table 3: Solve Times

Size Max Depth Solve Time
10x10 1 0.048542 seconds
10x10 1 0.385348 seconds
10x10 2 1.77571 seconds
10x10 2 3.23716 seconds
10x10 3 150.824 seconds*
30x25 1 1.95466 seconds
30x25 1 2.38471 seconds
30x25 1 4.4892 seconds
40x30 1 1.97524 seconds
40x30 3 66.268 seconds*

*These puzzles were determined to have multiple solutions
Puzzles taken from nikoli .com, kakuro − online.com, and
puzzle − loop.com.



Make a Slitherlink Puzzle

Overview

1. Make a loop

2. Fill grid with numbers

3. Remove some numbers



Making a Loop

Start with an empty m × n grid, a simple rule, and three lists:

1. available

2. expandable

3. unexpandable

Start with every location in the grid in available but none in
unexpandable and expandable. Then, add one random location to
expandable and remove it from available.



Making a Loop

Start with an empty m × n grid, a simple rule, and three lists:

1. available

2. expandable

3. unexpandable

Start with every location in the grid in available but none in
unexpandable and expandable. Then, add one random location to
expandable and remove it from available.



Bad Stuff

Rule: When expanding from a location, cur , in expandable to an
adjacent location in available , make sure that adding pos to
expandable doesn’t cause any bad stuff

Opposite: Opposite kitty-corners:

If opposite or either of the opposite kitty -corners are in
expandable, then do not add pos to the loop.



Making a Loop cont.

1. Choose a location, cur in expandable at random

2. Look at neighbors to see if and where the loop can expand
from cur .

2.1 If a neighbor is in available and it wasn’t a valid neighbor,
remove it from available

2.2 If there are no valid neighbors, add cur to unexpandable and
remove it from expandable

2.3 Otherwise, randomly choose an valid neighbor to add to add
to expandable and take out of available

3. repeat until there are no locations in expandable



Making a Loop cont.

1. Choose a location, cur in expandable at random

2. Look at neighbors to see if and where the loop can expand
from cur .

2.1 If a neighbor is in available and it wasn’t a valid neighbor,
remove it from available

2.2 If there are no valid neighbors, add cur to unexpandable and
remove it from expandable

2.3 Otherwise, randomly choose an valid neighbor to add to add
to expandable and take out of available

3. repeat until there are no locations in expandable



Making a Loop cont.

1. Choose a location, cur in expandable at random

2. Look at neighbors to see if and where the loop can expand
from cur .

2.1 If a neighbor is in available and it wasn’t a valid neighbor,
remove it from available

2.2 If there are no valid neighbors, add cur to unexpandable and
remove it from expandable

2.3 Otherwise, randomly choose an valid neighbor to add to add
to expandable and take out of available

3. repeat until there are no locations in expandable



Making a Loop cont.

1. Choose a location, cur in expandable at random

2. Look at neighbors to see if and where the loop can expand
from cur .

2.1 If a neighbor is in available and it wasn’t a valid neighbor,
remove it from available

2.2 If there are no valid neighbors, add cur to unexpandable and
remove it from expandable

2.3 Otherwise, randomly choose an valid neighbor to add to add
to expandable and take out of available

3. repeat until there are no locations in expandable



Making a Loop cont.

1. Choose a location, cur in expandable at random

2. Look at neighbors to see if and where the loop can expand
from cur .

2.1 If a neighbor is in available and it wasn’t a valid neighbor,
remove it from available

2.2 If there are no valid neighbors, add cur to unexpandable and
remove it from expandable

2.3 Otherwise, randomly choose an valid neighbor to add to add
to expandable and take out of available

3. repeat until there are no locations in expandable



Making a Loop cont.

1. Choose a location, cur in expandable at random

2. Look at neighbors to see if and where the loop can expand
from cur .

2.1 If a neighbor is in available and it wasn’t a valid neighbor,
remove it from available

2.2 If there are no valid neighbors, add cur to unexpandable and
remove it from expandable

2.3 Otherwise, randomly choose an valid neighbor to add to add
to expandable and take out of available

3. repeat until there are no locations in expandable



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Making a Loop Example



Filling with Numbers

Surprise surprise, this is actually really easy

(sum the differences in the neighboring locations)



Removing Numbers

To make puzzles interesting, we want to remove numbers
We want to do so until we have reached a certain count
Must retain one unique solution



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers

The Process:

1. Pick a number from a set of eligible numbers

2. Add this number to a stack of ineligible numbers

3. Check if eliminating would make the puzzle unsolvable

3.1 If solvable, remove the number from both the grid and set of
eligible numbers

3.2 If unsolvable, only remove the number from the set of eligible
numbers

4. Repeat until set of eligible numbers is empty



Removing Numbers cont.

Once set of eligible numbers is empty:

1. Pop numbers off ineligible stack

2. Place each back into the set of eligible numbers

3. Do so until most recently eliminated number is found

4. Keep eliminated in the ineligible stack, but place back into
grid

Repeat removing numbers until desired count is reached



Removing Numbers cont.

Once set of eligible numbers is empty:

1. Pop numbers off ineligible stack

2. Place each back into the set of eligible numbers

3. Do so until most recently eliminated number is found

4. Keep eliminated in the ineligible stack, but place back into
grid

Repeat removing numbers until desired count is reached



Removing Numbers cont.

Once set of eligible numbers is empty:

1. Pop numbers off ineligible stack

2. Place each back into the set of eligible numbers

3. Do so until most recently eliminated number is found

4. Keep eliminated in the ineligible stack, but place back into
grid

Repeat removing numbers until desired count is reached



Removing Numbers cont.

Once set of eligible numbers is empty:

1. Pop numbers off ineligible stack

2. Place each back into the set of eligible numbers

3. Do so until most recently eliminated number is found

4. Keep eliminated in the ineligible stack, but place back into
grid

Repeat removing numbers until desired count is reached



Removing Numbers cont.

Once set of eligible numbers is empty:

1. Pop numbers off ineligible stack

2. Place each back into the set of eligible numbers

3. Do so until most recently eliminated number is found

4. Keep eliminated in the ineligible stack, but place back into
grid

Repeat removing numbers until desired count is reached



Removing Numbers cont.

Once set of eligible numbers is empty:

1. Pop numbers off ineligible stack

2. Place each back into the set of eligible numbers

3. Do so until most recently eliminated number is found

4. Keep eliminated in the ineligible stack, but place back into
grid

Repeat removing numbers until desired count is reached



Removing Numbers cont.

It’s too hard!

Improvements

1. Data

2. Rule set

3. Balancing





Ruleset Limitation

As a result, we created two subsets of rules:

I easy: the rules with a greater than 5% occurrence rate

I hard: the rules with a greater than 1% occurrence rate



An ‘Easy’ Puzzle



A Quick Attempt at the ‘Easy’ Puzzle



Balancing the Numbers



A Balanced Easy Puzzle



A Quick Attempt at the ‘Easy’ Puzzle



Time Complexity

Important details

I The Solver is run on the order of mn times.

I Each time the solver is run, it happends with a maximum
depth of one guess which has on the order of O((mn)2) time.

I Therefore, the generator run in the order of O((mn)3) time.



References

Conceptis Puzzles Slitherlink Techniques
On the NP-completeness of the Slither Link Puzzle Takayuki YATO
Finding All Solutions and Instances of Numberlink and Slitherlink
by ZDDs. Ryo Yoshinaka, Toshiki Saitoh, Jun Kawahara, Koji
Tsuruma, Hiroaki Iwashita and Shin-ichi Minato.

A rule-based approach to the puzzle of Slither Link. Stefan
Herting.

Puzzles and Games: A Mathematical Modeling Approach. Tony
Hürlimann, 2015

Solving logical puzzles using mathematical models. KVIS Susanti,
S Lukas.



Thank you



Questions?


	What is a Slitherlink Puzzle?
	How to Define a Slitherlink Puzzle
	How to Solve a Slitherlink Puzzle
	How to Make a Slitherlink Puzzle

