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1 Least Square Fits for Quadratics

Let
k

} : 2
F(xla 7xn) - (a()i + a1 + anzxn)
i=1
That is, F'(x1, ..., ;) is the sum of squares of linear functions in n variables. This function is never negative, and

a common task in what follows is to find X = (z1, ..., x,) that makes F(z1,...,z,) as close to 0 as possible. There
are two versions of this which we consider separately.

1.1 Method A: ag; =0 for all : and X constrained to be a unit vector

1. Square everything out and collect terms to write

F(z1,..,2,) = zn:buzf + i i bijrit;
i=1

i=1 j=i+1

2. Create the symmetric matrix C' = (¢;;) from these coefficients by defining ¢;; = b;;, ¢;; = b;;/2 for i < j, and
Cij = Cji for ] <1 . For example if F(IL‘l, 5132) = b11$% + bQQx% + blgzll’g then

b bia/2
C = 11 12/
bi2/2 b2
Since C' is a symmetric matrix, by a theorem in linear algebra, the eigenvalues of C' are all real, and the
associated eigenvectors are orthogonal to each other. Suppose the eigenvalues are \; < Ao < ... < A, and the

associated unit eigenvectors are vy, ...,v,. If P is the matrix whose columns are these eigenvectors and D is
the diagonal matrix of eigenvalues, the Diagonalization Theorem in linear algebra says that:

C=prDpP!

3. It can be proved from this that X = vp, the unit eigenvector associated to the smallest eigenvalue, minimizes
F' as described above.

1.2 Method B: No conditions on gy or X
The minimum of the multivariable function F occurs where

oF  OF

) =0

Since F(X) is quadratic, VF(X) = 0 is a system of n linear equations in n unknowns which can be solved using any
linear system solver. There should be only one solution since F' has no maximum value.
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2 Rotation and Translation

Let R; be the (unknown) rotation matrix from world to camera j coordinates and let T); be the (unknown) translation
vector from the world origin to camera j origin. We can find R; and T} provided:

1. We can identify several vectors in the cameras view that are known to be parallel to the world coordinate axes.
In a room, if we fix the world origin to be a corner of the room, we can use lines along walls and windows, etc.
Let X = {X1,... X0, }, Y ={V1,...Y,,}, and Z = {Z;, ..., Z,,,} be the sets of these vectors parallel to the
three coordinates axes, respectively. This alone allows us to compute R;

2. We have measured the world positions of a set of points P = {Pj, ..., Ps} and can identify them in at least 2
camera images. In this case, we can find T} by solving a linear system of 3 equations in 3 unknowns,

3. We can only identify the set of points P = { P}, ..., P;} in at least 2 camera images. In this case, we can find T;
and the coordinates of all the P; by solving a large system of linear equations. This is likely to be less accurate
than the the previous method.

2.1 Finding R;

In Figure 1, uppercase letters indicate a vector expressed in world coordinates and lowercase letters indicate a vector
expressed in camera coordinates. Vector V is one of the vectors parallel to a world coordinate axis. We will assume
in what follows that V = X, a vector parallel to the x-axis, since the other cases are similar. The vector vc is the
image of this vector in the camera and its endpoints (p1,p2) and (g1, ¢2) are the measured (i.e. known) camera pixel
coordinates. If the focal length of the camera is F', then

ﬁC:(pl,p27F) qc:(q17q27F)
Then the normal to the plane passing through the camera origin and containing these two vectors can be computed:
nc = pc X qc

Hence to each vector in X; € X, we can associate a normal vector m; = nc to the plane through the camera origin
and X;. We convert X; into camera coordinates by multiplying it by the yet unknown rotation matrix R;. That is
R; X; is perpendicular to m; so

m; o (R;X;) =0 (1)



Now let

Rj=|ra1 m22 723 (2)

Any rotation matrix has the property that its columns are unit vectors. Since X; = (s;,0,0), if we let m; = (a;, b;, ¢;)
and plug into equation (1) we obtain:

(air11 + birar + ¢irs1) =0 (3)
Given that we have measured the vectors m;, we won’t, in general, be able to find a simultaneous solution (r11,r21,731)
for all 7. Instead we try to find a solution that minimizes

ni

Z(aﬂ"u + birar + ¢ir31)? (4)

i=1

Method A from Section 1 can be used to find a best estimate of the first column of R;. Repeating this process

for the vectors in Y and Z gives us best estimates for the 2nd and third columns of R;.

2.2 Finding T;

In Figure 1, observe that the vectors T'— P and T — @ also lie in the plane containing V' and the camera origin. If
we let P = P; and Q = Py, two of the measured world points, then, as in the previous section, we can find a vector
M, normal to the plane containing the camera origin and the vector connecting P; to P;. We convert these vectors
into camera coordinates using the (now known) rotation matrix R;. So we know that

mikORj(Tj—Pi):O mikOle(Tj—Pk,):O (5)
Again, we try to minimize
> (M o Ry(Tj — Pi)* + (may, o Ry(T; — Pr)? (6)
i#k

Since myk, Rj, P;, and Py are all known and T; = (t1,t2,t3), equation (6) reduces to a quadratic expression in ¢y,
to, and t3. That is, we need to minimize a function of the form

f(t1,ta,t3) = c1t? + cot3 + c3t3 + catita + cstits + cotals + crty + cgta + cots + cio (7)

A best estimate can be found by using Method B from Section 1.

If the coordinates of the points P; are not known, then equation (6) still is quadratic in the coordinate variables
U = (t1,ta,t3, P11, P12, P13, ..., Ps1, Ps2, Ps3), so we can still solve a linear system in 3s + 3 unknowns. In this case
we will get a solution of the form s;U;. That is, we will only find a solution up to a scale factor.

3 Finding the World Coordinates of Markers

Once the camera parameters for each camera are computed (focal length Fj, rotation matrix R;, translation vector
T;) we can find the world coordinates of any marker by knowing its pixel coordinates in at least 2 cameras.

Let p; = (z;,y;,F;) where (x;,y;) is the pixel address of the marker in camera j and Fj is the focal length
of camera j. Then X; = R;lpj is the vector p; expressed in world coordinates. Since 7} is the world coordinate
expression for the camera j origin, the parametric equation of the line passing through the camera origin j in the
direction of X; is given by

Pi(t;) = Tj +1;X;.
All we know now is that our marker lies somewhere along this line.

If we can find ¢; and ¢; such that P;(¢t;) = P;(t;) for cameras ¢ and j, this common point is our correct 3D
world location of the marker. Of course, due to measurement errors, this is not likely, so instead we minimize the
square-sum error of all the lengths of vectors P;(t;) — P;(t;). If there are N cameras that can see the marker, we
minimize the function

N N N
F(ty,tn) = (Pi(t) = Pt =D > (1T = Tj + 6. X — £, X;])° (8)
+1 i=

i=1 j=1 1 j=i+1

which is quadratic in (1, ..., tx) and so can be minimized using Method B from Section 1.



