Recovering Camera Location, Camera Orientation, and World Marker Locations From Photographs

Jack Goldfeather

February 24, 2010

1 Least Square Fits for Quadratics

Let

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k}\left(a_{0 i}+a_{1 i} x_{1}+\ldots a_{n i} x_{n}\right)^{2}
$$

That is, $F\left(x_{1}, \ldots, x_{n}\right)$ is the sum of squares of linear functions in n variables. This function is never negative, and a common task in what follows is to find $X=\left(x_{1}, \ldots, x_{n}\right)$ that makes $F\left(x_{1}, \ldots, x_{n}\right)$ as close to 0 as possible. There are two versions of this which we consider separately.

1.1 Method A: $a_{0 i}=0$ for all i and X constrained to be a unit vector

1. Square everything out and collect terms to write

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} b_{i i} x_{i}^{2}+\sum_{i=1}^{n} \sum_{j=i+1}^{n} b_{i j} x_{i} x_{j}
$$

2. Create the symmetric matrix $C=\left(c_{i j}\right)$ from these coefficients by defining $c_{i i}=b_{i i}, c_{i j}=b_{i j} / 2$ for $i<j$, and $c_{i j}=c_{j i}$ for $j<i$. For example if $F\left(x_{1}, x_{2}\right)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{12} x_{1} x_{2}$ then

$$
C=\left(\begin{array}{cc}
b_{11} & b_{12} / 2 \\
b_{12} / 2 & b_{22}
\end{array}\right)
$$

Since C is a symmetric matrix, by a theorem in linear algebra, the eigenvalues of C are all real, and the associated eigenvectors are orthogonal to each other. Suppose the eigenvalues are $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ and the associated unit eigenvectors are v_{1}, \ldots, v_{n}. If P is the matrix whose columns are these eigenvectors and D is the diagonal matrix of eigenvalues, the Diagonalization Theorem in linear algebra says that:

$$
C=P D P^{-1}
$$

3. It can be proved from this that $X=v_{1}$, the unit eigenvector associated to the smallest eigenvalue, minimizes F as described above.

1.2 Method B: No conditions on $a_{0 i}$ or X

The minimum of the multivariable function F occurs where

$$
\nabla F(X)=\left(\frac{\partial F}{\partial x_{1}}, \ldots \frac{\partial F}{\partial x_{n}}\right)=0
$$

Since $F(X)$ is quadratic, $\nabla F(X)=0$ is a system of n linear equations in n unknowns which can be solved using any linear system solver. There should be only one solution since F has no maximum value.

Figure 1: Camera View of World

2 Rotation and Translation

Let R_{j} be the (unknown) rotation matrix from world to camera j coordinates and let T_{j} be the (unknown) translation vector from the world origin to camera j origin. We can find R_{j} and T_{j} provided:

1. We can identify several vectors in the cameras view that are known to be parallel to the world coordinate axes. In a room, if we fix the world origin to be a corner of the room, we can use lines along walls and windows, etc. Let $X=\left\{X_{1}, \ldots, X_{n_{1}}\right\}, Y=\left\{Y_{1}, \ldots, Y_{n_{2}}\right\}$, and $Z=\left\{Z_{1}, \ldots, Z_{n_{3}}\right\}$ be the sets of these vectors parallel to the three coordinates axes, respectively. This alone allows us to compute R_{j}
2. We have measured the world positions of a set of points $P=\left\{P_{1}, \ldots, P_{s}\right\}$ and can identify them in at least 2 camera images. In this case, we can find T_{j} by solving a linear system of 3 equations in 3 unknowns,
3. We can only identify the set of points $P=\left\{P_{1}, \ldots, P_{s}\right\}$ in at least 2 camera images. In this case, we can find T_{j} and the coordinates of all the P_{i} by solving a large system of linear equations. This is likely to be less accurate than the the previous method.

2.1 Finding R_{j}

In Figure 1, uppercase letters indicate a vector expressed in world coordinates and lowercase letters indicate a vector expressed in camera coordinates. Vector V is one of the vectors parallel to a world coordinate axis. We will assume in what follows that $V=X_{i}$, a vector parallel to the x -axis, since the other cases are similar. The vector $\overline{v c}$ is the image of this vector in the camera and its endpoints $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ are the measured (i.e. known) camera pixel coordinates. If the focal length of the camera is F, then

$$
\overline{p c}=\left(p_{1}, p_{2}, F\right) \quad \overline{q c}=\left(q_{1}, q_{2}, F\right)
$$

Then the normal to the plane passing through the camera origin and containing these two vectors can be computed:

$$
\overline{n c}=\overline{p c} \times \overline{q c}
$$

Hence to each vector in $X_{i} \in X$, we can associate a normal vector $m_{i}=\overline{n c}$ to the plane through the camera origin and X_{i}. We convert X_{i} into camera coordinates by multiplying it by the yet unknown rotation matrix R_{j}. That is $R_{j} X_{i}$ is perpendicular to \bar{m}_{i} so

$$
\begin{equation*}
m_{i} \circ\left(R_{j} X_{i}\right)=0 \tag{1}
\end{equation*}
$$

Now let

$$
R_{j}=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \tag{2}\\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

Any rotation matrix has the property that its columns are unit vectors. Since $X_{i}=\left(s_{i}, 0,0\right)$, if we let $\bar{m}_{i}=\left(a_{i}, b_{i}, c_{i}\right)$ and plug into equation (1) we obtain:

$$
\begin{equation*}
\left(a_{i} r_{11}+b_{i} r_{21}+c_{i} r_{31}\right)=0 \tag{3}
\end{equation*}
$$

Given that we have measured the vectors \bar{m}_{i}, we won't, in general, be able to find a simultaneous solution $\left(r_{11}, r_{21}, r_{31}\right)$ for all i. Instead we try to find a solution that minimizes

$$
\begin{equation*}
\sum_{i=1}^{n_{1}}\left(a_{i} r_{11}+b_{i} r_{21}+c_{i} r_{31}\right)^{2} \tag{4}
\end{equation*}
$$

Method A from Section 1 can be used to find a best estimate of the first column of R_{j}. Repeating this process for the vectors in Y and Z gives us best estimates for the 2nd and third columns of R_{j}.

2.2 Finding T_{j}

In Figure 1, observe that the vectors $T-P$ and $T-Q$ also lie in the plane containing V and the camera origin. If we let $P=P_{i}$ and $Q=P_{k}$, two of the measured world points, then, as in the previous section, we can find a vector $\bar{m}_{i k}$ normal to the plane containing the camera origin and the vector connecting P_{i} to P_{k}. We convert these vectors into camera coordinates using the (now known) rotation matrix R_{j}. So we know that

$$
\begin{equation*}
\bar{m}_{i k} \circ R_{j}\left(T_{j}-P_{i}\right)=0 \quad m_{i k} \circ R_{j}\left(T_{j}-P_{k}\right)=0 \tag{5}
\end{equation*}
$$

Again, we try to minimize

$$
\begin{equation*}
\sum_{i \neq k}\left(\bar{m}_{i k} \circ R_{j}\left(T_{j}-P_{i}\right)\right)^{2}+\left(m_{i k} \circ R_{j}\left(T_{j}-P_{k}\right)^{2}\right. \tag{6}
\end{equation*}
$$

Since $m_{i k}, R_{j}, P_{i}$, and P_{k} are all known and $T_{j}=\left(t_{1}, t_{2}, t_{3}\right)$, equation (6) reduces to a quadratic expression in t_{1}, t_{2}, and t_{3}. That is, we need to minimize a function of the form

$$
\begin{equation*}
f\left(t_{1}, t_{2}, t_{3}\right)=c_{1} t_{1}^{2}+c_{2} t_{2}^{2}+c_{3} t_{3}^{2}+c_{4} t_{1} t_{2}+c_{5} t_{1} t_{3}+c_{6} t_{2} t_{3}+c_{7} t_{1}+c_{8} t_{2}+c_{9} t_{3}+c_{10} \tag{7}
\end{equation*}
$$

A best estimate can be found by using Method B from Section 1.
If the coordinates of the points P_{i} are not known, then equation (6) still is quadratic in the coordinate variables $U=\left(t_{1}, t_{2}, t_{3}, P_{11}, P_{12}, P_{13}, \ldots, P_{s 1}, P_{s 2}, P_{s 3}\right)$, so we can still solve a linear system in $3 s+3$ unknowns. In this case we will get a solution of the form $s_{j} U_{j}$. That is, we will only find a solution up to a scale factor.

3 Finding the World Coordinates of Markers

Once the camera parameters for each camera are computed (focal length F_{j}, rotation matrix R_{j}, translation vector T_{j}) we can find the world coordinates of any marker by knowing its pixel coordinates in at least 2 cameras.

Let $p_{j}=\left(x_{j}, y_{j}, F_{j}\right)$ where $\left(x_{j}, y_{j}\right)$ is the pixel address of the marker in camera j and F_{j} is the focal length of camera j. Then $X_{j}=R_{j}^{-1} p_{j}$ is the vector p_{j} expressed in world coordinates. Since T_{j} is the world coordinate expression for the camera j origin, the parametric equation of the line passing through the camera origin j in the direction of X_{j} is given by

$$
P_{j}\left(t_{j}\right)=T_{j}+t_{j} X_{j}
$$

All we know now is that our marker lies somewhere along this line.
If we can find t_{i} and t_{j} such that $P_{i}\left(t_{i}\right)=P_{j}\left(t_{j}\right)$ for cameras i and j, this common point is our correct 3D world location of the marker. Of course, due to measurement errors, this is not likely, so instead we minimize the square-sum error of all the lengths of vectors $P_{i}\left(t_{i}\right)-P_{j}\left(t_{j}\right)$. If there are N cameras that can see the marker, we minimize the function

$$
\begin{equation*}
F\left(t_{1}, \ldots, t_{N}\right)=\sum_{i=1}^{N} \sum_{j=i+1}^{N}\left(\left|P_{i}\left(t_{i}\right)-P_{j}\left(t_{j}\right)\right|\right)^{2}=\sum_{i=1}^{N} \sum_{j=i+1}^{N}\left(\left|T_{i}-T_{j}+t_{i} X_{i}-t_{j} X_{j}\right|\right)^{2} \tag{8}
\end{equation*}
$$

which is quadratic in $\left(t_{1}, \ldots, t_{N}\right)$ and so can be minimized using Method B from Section 1.

