Recovering Camera Location, Camera Orientation, and World Marker Locations From Photographs

Jack Goldfeather

February 24, 2010

1 Least Square Fits for Quadratics

Let

$$F(x_1, ..., x_n) = \sum_{i=1}^k (a_{0i} + a_{1i}x_1 + ... a_{ni}x_n)^2$$

That is, $F(x_1, ..., x_n)$ is the sum of squares of linear functions in n variables. This function is never negative, and a common task in what follows is to find $X = (x_1, ..., x_n)$ that makes $F(x_1, ..., x_n)$ as close to 0 as possible. There are two versions of this which we consider separately.

1.1 Method A: $a_{0i} = 0$ for all *i* and *X* constrained to be a unit vector

1. Square everything out and collect terms to write

$$F(x_1, ..., x_n) = \sum_{i=1}^n b_{ii} x_i^2 + \sum_{i=1}^n \sum_{j=i+1}^n b_{ij} x_i x_j$$

2. Create the symmetric matrix $C = (c_{ij})$ from these coefficients by defining $c_{ii} = b_{ii}$, $c_{ij} = b_{ij}/2$ for i < j, and $c_{ij} = c_{ji}$ for j < i. For example if $F(x_1, x_2) = b_{11}x_1^2 + b_{22}x_2^2 + b_{12}x_1x_2$ then

$$C = \begin{pmatrix} b_{11} & b_{12}/2 \\ b_{12}/2 & b_{22} \end{pmatrix}$$

Since C is a symmetric matrix, by a theorem in linear algebra, the eigenvalues of C are all real, and the associated eigenvectors are orthogonal to each other. Suppose the eigenvalues are $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$ and the associated unit eigenvectors are $v_1, ..., v_n$. If P is the matrix whose columns are these eigenvectors and D is the diagonal matrix of eigenvalues, the Diagonalization Theorem in linear algebra says that:

$$C = PDP^{-1}$$

3. It can be proved from this that $X = v_1$, the unit eigenvector associated to the *smallest* eigenvalue, minimizes F as described above.

1.2 Method B: No conditions on a_{0i} or X

The minimum of the multivariable function F occurs where

$$\nabla F(X) = \left(\frac{\partial F}{\partial x_1}, \dots \frac{\partial F}{\partial x_n}\right) = 0$$

Since F(X) is quadratic, $\nabla F(X) = 0$ is a system of *n* linear equations in *n* unknowns which can be solved using any linear system solver. There should be only one solution since *F* has no maximum value.

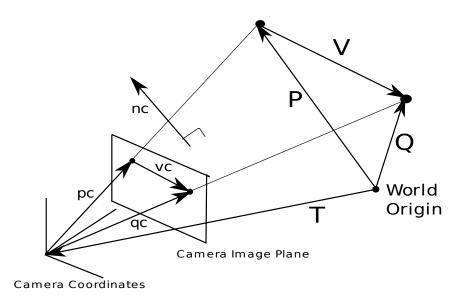


Figure 1: Camera View of World

2 Rotation and Translation

Let R_j be the (unknown) rotation matrix from world to camera *j* coordinates and let T_j be the (unknown) translation vector from the world origin to camera *j* origin. We can find R_j and T_j provided:

- 1. We can identify several vectors in the cameras view that are known to be parallel to the world coordinate axes. In a room, if we fix the world origin to be a corner of the room, we can use lines along walls and windows, etc. Let $X = \{X_1, ..., X_{n_1}\}, Y = \{Y_1, ..., Y_{n_2}\}$, and $Z = \{Z_1, ..., Z_{n_3}\}$ be the sets of these vectors parallel to the three coordinates axes, respectively. This alone allows us to compute R_i
- 2. We have measured the world positions of a set of points $P = \{P_1, ..., P_s\}$ and can identify them in at least 2 camera images. In this case, we can find T_j by solving a linear system of 3 equations in 3 unknowns,
- 3. We can only identify the set of points $P = \{P_1, ..., P_s\}$ in at least 2 camera images. In this case, we can find T_j and the coordinates of all the P_i by solving a large system of linear equations. This is likely to be less accurate than the the previous method.

2.1 Finding R_i

In Figure 1, uppercase letters indicate a vector expressed in world coordinates and lowercase letters indicate a vector expressed in camera coordinates. Vector V is one of the vectors parallel to a world coordinate axis. We will assume in what follows that $V = X_i$, a vector parallel to the x-axis, since the other cases are similar. The vector $v\bar{v}c$ is the image of this vector in the camera and its endpoints (p_1, p_2) and (q_1, q_2) are the measured (i.e. known) camera pixel coordinates. If the focal length of the camera is F, then

$$\bar{pc} = (p_1, p_2, F)$$
 $\bar{qc} = (q_1, q_2, F)$

Then the normal to the plane passing through the camera origin and containing these two vectors can be computed:

$$\bar{nc} = \bar{pc} \times \bar{qc}$$

Hence to each vector in $X_i \in X$, we can associate a normal vector $m_i = \bar{nc}$ to the plane through the camera origin and X_i . We convert X_i into camera coordinates by multiplying it by the yet unknown rotation matrix R_j . That is $R_j X_i$ is perpendicular to \bar{m}_i so

$$m_i \circ (R_j X_i) = 0 \tag{1}$$

Now let

$$R_j = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
(2)

Any rotation matrix has the property that its columns are unit vectors. Since $X_i = (s_i, 0, 0)$, if we let $\bar{m}_i = (a_i, b_i, c_i)$ and plug into equation (1) we obtain:

$$(a_i r_{11} + b_i r_{21} + c_i r_{31}) = 0 (3)$$

Given that we have measured the vectors \bar{m}_i , we won't, in general, be able to find a simultaneous solution (r_{11}, r_{21}, r_{31}) for all *i*. Instead we try to find a solution that minimizes

$$\sum_{i=1}^{n_1} (a_i r_{11} + b_i r_{21} + c_i r_{31})^2 \tag{4}$$

Method A from Section 1 can be used to find a best estimate of the first column of R_j . Repeating this process for the vectors in Y and Z gives us best estimates for the 2nd and third columns of R_j .

2.2 Finding T_i

In Figure 1, observe that the vectors T - P and T - Q also lie in the plane containing V and the camera origin. If we let $P = P_i$ and $Q = P_k$, two of the measured world points, then, as in the previous section, we can find a vector \bar{m}_{ik} normal to the plane containing the camera origin and the vector connecting P_i to P_k . We convert these vectors into camera coordinates using the (now known) rotation matrix R_j . So we know that

$$\bar{m}_{ik} \circ R_j(T_j - P_i) = 0 \qquad m_{ik} \circ R_j(T_j - P_k) = 0 \tag{5}$$

Again, we try to minimize

$$\sum_{i \neq k} (\bar{m}_{ik} \circ R_j (T_j - P_i))^2 + (m_{ik} \circ R_j (T_j - P_k)^2$$
(6)

Since m_{ik} , R_j , P_i , and P_k are all known and $T_j = (t_1, t_2, t_3)$, equation (6) reduces to a quadratic expression in t_1 , t_2 , and t_3 . That is, we need to minimize a function of the form

$$f(t_1, t_2, t_3) = c_1 t_1^2 + c_2 t_2^2 + c_3 t_3^2 + c_4 t_1 t_2 + c_5 t_1 t_3 + c_6 t_2 t_3 + c_7 t_1 + c_8 t_2 + c_9 t_3 + c_{10}$$
(7)

A best estimate can be found by using Method B from Section 1.

If the coordinates of the points P_i are not known, then equation (6) still is quadratic in the coordinate variables $U = (t_1, t_2, t_3, P_{11}, P_{12}, P_{13}, ..., P_{s1}, P_{s2}, P_{s3})$, so we can still solve a linear system in 3s + 3 unknowns. In this case we will get a solution of the form $s_j U_j$. That is, we will only find a solution up to a scale factor.

3 Finding the World Coordinates of Markers

Once the camera parameters for each camera are computed (focal length F_j , rotation matrix R_j , translation vector T_j) we can find the world coordinates of any marker by knowing its pixel coordinates in at least 2 cameras.

Let $p_j = (x_j, y_j, F_j)$ where (x_j, y_j) is the pixel address of the marker in camera j and F_j is the focal length of camera j. Then $X_j = R_j^{-1}p_j$ is the vector p_j expressed in world coordinates. Since T_j is the world coordinate expression for the camera j origin, the parametric equation of the line passing through the camera origin j in the direction of X_j is given by

$$P_j(t_j) = T_j + t_j X_j$$

All we know now is that our marker lies somewhere along this line.

If we can find t_i and t_j such that $P_i(t_i) = P_j(t_j)$ for cameras *i* and *j*, this common point is our correct 3D world location of the marker. Of course, due to measurement errors, this is not likely, so instead we minimize the square-sum error of all the lengths of vectors $P_i(t_i) - P_j(t_j)$. If there are *N* cameras that can see the marker, we minimize the function

$$F(t_1, ..., t_N) = \sum_{i=1}^N \sum_{j=i+1}^N (|P_i(t_i) - P_j(t_j)|)^2 = \sum_{i=1}^N \sum_{j=i+1}^N (|T_i - T_j + t_i X_i - t_j X_j|)^2$$
(8)

which is quadratic in $(t_1, ..., t_N)$ and so can be minimized using Method B from Section 1.