Math 5707 Exam 3

There are 6 problems, each worth 7 points. Turn in solutions for (at most) 5 of them. If you turn in work for all 6 problems, an arbitrary subset of 5 problems will be graded. Be sure to justify all your work: answers without sufficient justification will receive no credit.

Grading. The first two major errors cost 3 and 2 points, respectively. Minor errors cost 1 point each. Incoherent solutions are awarded a 0 without regard to the aforementioned scheme. A subset of some common (major, unless otherwise labelled) errors are listed after each problem.

Problem 1. Let $G=(V, E)$ be a graph on n vertices and \bar{G} its complement (see Diestel $\S 1.1$). Prove the following inequalities involving the chromatic numbers $\chi(G)$ and $\chi(\bar{G})$.
(a) $\chi(G) \cdot \chi(\bar{G}) \geq n$.
(b) $\chi(G)+\chi(\bar{G}) \geq 2 \sqrt{n}$.
[Hint: Relate $\chi(\bar{G})$ with $\alpha(G)$, the size of the largest independent set. Use (a) for (b), even if you didn't manage to prove (a).]

Solution. Fix a colouring c of G with $a:=\chi(G)$ colours and a colouring c^{\prime} of \bar{G} with $b:=\chi(\bar{G})$ colours. On one hand, $S:=\left\{\left(c(v), c^{\prime}(v)\right): v \in V\right\}$ is a subset of $[a] \times[b]$, and so

$$
|S| \leq|[a] \times[b]|=a b .
$$

On the other hand, for each pair of distinct vertices $u, v \in V(G)=V(\bar{G})$, note that $u v \in$ $E(G) \sqcup E(\bar{G})$, so u and v must be coloured differently in c or c^{\prime}, and hence

$$
|S|=n
$$

proving (i).
Taking the square root of

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}=\left(a^{2}-2 a b+b^{2}\right)+4 a b=(a-b)^{2}+4 a b \geq 4 a b
$$

gives (ii).
Grading. Failure to do one of the parts (correctly).

Problem 2. For $n \in \mathbb{N}$, prove that there is a tournament on n vertices with at least $n!2^{1-n}$ directed Hamilton paths.

Solution. Obtain a tournament T from K^{n} by choosing a direction for each edge independently and randomly with probability $1 / 2$ for either direction. Let X be the random variable denoting the number of directed Hamilton paths. For each permutation $\sigma=\left(v_{1}, \ldots, v_{n}\right)$ of the n vertices, let X_{σ} be the indicator that $v_{1} v_{2} \ldots v_{n}$ is a directed Hamilton path. For this to happen, the $n-1$ edges must be directed correctly. The probability of this happening is 2^{1-n}, as the edge directions are independent. Therefore, the expectation is $\mathbb{E}\left[X_{\sigma}\right]=2^{1-n}$. As $X=\sum_{\sigma} X_{\sigma}$, where σ runs over all n ! permutations of the vertex set, by linearity of expectation, we have

$$
\mathbb{E}[X]=\sum_{\sigma} \mathbb{E}\left[X_{\sigma}\right]=n!2^{1-n}
$$

Since expectation is a (weighted) average, there is some orientation with at least $\mathbb{E}[X]=$ $n!2^{1-n}$ directed Hamilton paths, as desired.

Grading. Using probability without (at least informally) defining a probability space, not using independence.

Problem 3. There are n gnomes operating the gnomeship UMN Enterprise MATH-5707. This ship has $k \leq n$ different stations, each of which must be occupied by a gnome who is trained for that station. It is desired that any subset of k gnomes can operate the ship (in the event that an arbitrary subset of $n-k$ gnomes are killed sleeping). One way to do this is to train all n gnomes for all k stations. However, as training is costly, the Gnome Resources Allocation Provisioning Hegemony asks you to minimize the total number of gnomes trained for the stations. To avoid being executed, you should propose a training scheme and prove that it is optimal, in the sense that it is impossible to have fewer number of total trainings. [Hint: The G.R.A.P.H. understands a graph theoretic proof if and only if its relation to the present situation is made explicit.]

Solution. Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be the set of n gnomes and $S=\left\{s_{1}, \ldots, s_{k}\right\}$ the set of k stations. Create a bipartite graph (S, G, E) where a gnome $g \in G$ is joined to a station $s \in S$ if and only if g is trained for s. Note that a subset $H \subseteq G$ of k gnomes can operate the ship if and only if there is a complete matching of S that matches each station to a gnome in H. We wish to minimize the number of edges $|E|$ in such a graph subject to this constraint.

Let E consists of a matching $\left\{s_{i} g_{i}: 1 \leq i \leq k\right\}$ and all edges between S and g_{i} for $i>k$. Let $H \subseteq G$ be a set of $|H|=k$ gnomes. Match each $g_{i} \in H$ with $i \leq k$ to s_{i}. Since the remaining gnomes are trained for all possible stations, surely a matching exists. This shows that $|E|=k+(n-k) k$ works.

Conversely, suppose that (S, G, E) has fewer than $k+(n-k) k=k(n-k+1)$ edges. Not all k stations can have degree at least $n-k+1$, so some station s_{i} has degree at most $n-k$. This means s_{i} has at least $n-(n-k)=k$ non-neighbours in G. Pick a subset H of k non-neighbours of s_{i} in G to show that no matching can cover s_{i} and H.

Grading. Incorrect training scheme, incorrect proof that a training scheme works, failure to establish a (correct) lower bound on the number of trainings required.

Problem 4. For $n \geq 3$, prove that in any edge colouring of a K^{n} with 2 colours, there is a Hamilton cycle that is the union of two monochromatic paths. [Hint: A path is monochromatic if all its edges are coloured equally. A monochromatic Hamilton cycle is the union of two monochromatic paths in many different ways.]

Solution. Say a Hamilton cycle is k-part if it is a union of k independent monochromatic paths. We first claim that it suffices to find a 3 -part Hamilton cycle. Indeed, suppose a Hamilton cycle is a union of three independent monochromatic paths P_{1}, P_{2}, P_{3}. By the pigeonhole principle, using two colours (holes) for three paths (pigeons), at least two paths, say P_{1} and P_{2}, are coloured equally. As P_{1} and P_{2} necessarily intersect, $P_{1} \cup P_{2}$ is a monochromatic path, which, together with P_{3}, shows that the Hamilton cycle is the union of two monochromatic paths.

Apply induction on n. The base case $n=3$ is immediate, as the three edges are independent monochromatic paths (of length one) that form a 3-part Hamilton cycle.

Now let $G=K^{n+1}$ and colour the edges with colours red and blue. Fix a vertex $v \in V(G)$ and consider $G-v$. By induction, $G-v$ has a 2 -part Hamilton cycle $v_{0} v_{1} \ldots v_{n}$, where $v_{0}=v_{n}$. WLOG, assume $v_{0} v_{1} \ldots v_{k}$ is (monochromatically) red, and $v_{k} v_{k+1} \ldots v_{n}$ is blue (or contains no edges), for some $1 \leq k \leq n$. Consider the colour of the edge $v v_{0}=v v_{n}$. If $v v_{n}$ is blue, then $v v_{1}$ is monochromatic, $v_{1} v_{2} \ldots v_{k}$ is red, and $v_{k} \ldots v_{n} v$ is blue. This means $v v_{1} \ldots v_{n} v$ is a 3 -part Hamilton cycle. Otherwise, $v v_{0}$ is red. Set $t=\min \{k, n-1\}$. Then $v v_{0} v_{1} \ldots v_{t}$ is (monochromatically) red, $v_{t} v_{t+1} \ldots v_{n-1}$ is blue, and $v_{n-1} v$ is a monochromatic path of length 1 . This means $v v_{0} v_{1} \ldots v_{n-1} v$ is a 3 -part Hamilton cycle.

Grading. Not considering the case of a monochromatic Hamilton cycle in the inductive step, or (minor) claiming it is easy without proof; considering too many cases (minor).

Problem 5. Formulate and prove the generalization of Ford-Fulkerson (Theorem 6.2.2) for networks with multiple source and sink vertices. [Hint: In a network, we assumed that a source vertex has only outgoing edges and a sink vertex has only incoming edges. You may wish to redefine or clarify terms such as flow (and its total value) and cut (and its capacity). Do not reinvent the wheel.]

Solution. Let $D=(V, E)$ be a digraph and (D, S, T, c) be a generalized network, where S and T are disjoint subsets of V consisting of source and sink vertices. As before, a source (resp. sink) vertex has no incoming (resp. outgoing) edges. A flow f of N is a function $E \rightarrow \mathbb{R}$ such that f is conserved at every vertex $x \in V \backslash(S \cup T)$, and feasible at every edge $e \in E$. A cut is a pair (X, Y) of subsets partitioning V such that $S \subseteq X$ and $T \subseteq Y$, and $c(X, Y)$ is its capacity, as before. Define the total value of a flow f, denoted $|f|$, by $f(S, V)$.

Generalized Ford-Fulkerson states: In every generalized network, the maximum total value of a flow equals the minimum capacity of a cut.

Let $N=(D, S, T, c)$ be a generalized network. Define an ordinary network $N^{\prime}=\left(D^{\prime}, s^{\prime}, t^{\prime}, c^{\prime}\right)$ as follows: Start with N. Add a new vertex s^{\prime} to $V^{\prime}:=V\left(D^{\prime}\right)$ and, for each $s \in S$, add an edge $\left(s^{\prime}, s\right)$ with capacity $c(s, V)$. Similarly, add a new vertex t^{\prime} to V^{\prime} and, for each $t \in T$, add an edge $\left(t, t^{\prime}\right)$ with capacity $c(V, t)$.

Given a flow f of N, define a flow f^{\prime} of N^{\prime} by setting the values on the new edges in the only possible way to make f^{\prime} conserved on the vertices of $S \sqcup T$. This clearly creates a bijection between flows of N and flows of N^{\prime}. Furthermore, corresponding flows have the same total value:

$$
|f|=f(S, V)=f^{\prime}\left(\left\{s^{\prime}\right\} \cup S, V^{\prime}\right)=\left|f^{\prime}\right| .
$$

In particular, the maximum total value of a flow of N is equal to the maximum total value of a flow of N^{\prime}, which, by the ordinary Ford-Fulkerson Theorem, is equal to the minimum capacity of a cut of N^{\prime}.

It remains to show that this minimum capacity is the same for N as well. Take a cut (X, Y) of N, and consider the cut $\left(\left\{s^{\prime}\right\} \cup X, Y \cup\left\{t^{\prime}\right\}\right)$ of N^{\prime}. As $S \subseteq X$ and $T \subseteq Y$, the new edges involving s^{\prime} or t^{\prime} do not appear in the sum $c(X, Y)$. The summands are exactly the same as for $c^{\prime}\left(\left\{s^{\prime}\right\} \cup X, Y \cup\left\{t^{\prime}\right\}\right)$, and hence their capacities are equal. This means

$$
\begin{equation*}
\min c(X, Y) \geq \min c^{\prime}\left(X^{\prime}, Y^{\prime}\right) \tag{*}
\end{equation*}
$$

where (X, Y) runs over all cuts of N and $\left(X^{\prime}, Y^{\prime}\right)$ runs over all cuts of N^{\prime}.
Finally, take a cut $\left(X^{\prime}, Y^{\prime}\right)$ of N^{\prime} with minimum capacity. Let $X=X^{\prime} \backslash\left\{s^{\prime}\right\}$ and $Y=$ $Y^{\prime} \backslash\left\{t^{\prime}\right\}$. Note that (X, Y) may not be a cut if X^{\prime} and Y^{\prime} do not contain S and T, respectively. Suppose $s \in S \backslash X^{\prime}$. Then

$$
c^{\prime}\left(X^{\prime}, Y^{\prime}\right)=c^{\prime}\left(X^{\prime}, Y^{\prime} \backslash\{s\}\right)+c^{\prime}\left(X^{\prime}, s\right)
$$

Note that $c^{\prime}\left(X^{\prime}, s\right)=c^{\prime}\left(s^{\prime}, s\right)=c(s, V)=c^{\prime}\left(s, V^{\prime}\right) \geq c^{\prime}(s, Y \backslash\{s\})$, so

$$
c^{\prime}\left(X^{\prime}, Y^{\prime}\right) \geq c^{\prime}\left(X^{\prime}, Y^{\prime} \backslash\{s\}\right)+c^{\prime}(s, Y \backslash\{s\})=c^{\prime}\left(X^{\prime} \cup\{s\}, Y^{\prime} \backslash\{s\}\right)
$$

As $c^{\prime}\left(X^{\prime}, Y^{\prime}\right)$ was minimum over all cuts, the above is actually an equality. Therefore, we may assume $X^{\prime} \supseteq S$, and analogously assume $Y^{\prime} \supseteq T$. Then (X, Y) is in fact a cut of N, and therefore we have equality in (*), as desired.

Grading. Not formulating the generalization.
Problem 6. An orientation is acyclic if it contains no (directed) cycles. Let Q_{G} denote the number of acyclic orientations of a graph G.
(a) Prove that $Q_{G}=Q_{G-e}+Q_{G / e}$ for each edge $e \in E(G)$.
(b) Prove that $Q_{G}=\left|P_{G}(-1)\right|$, where $P_{G}(k)$ is the chromatic polynomial defined in Exercise 5.18 of Diestel.
[Hint: In fact, $Q_{G}=(-1)^{|G|} P_{G}(-1)$.]
Solution. Let G be a graph and fix $e=\{x, y\} \in E(G)$. Given an acyclic orientation of G, by deleting the directed edge corresponding to e, no cycles would be created, and hence we obtain an acyclic orientation of $G-e$.

Conversely, let D be an acyclic orientation of $G-e$. For $i=\{0,1,2\}$, say D is i-extendable if exactly i of the orientations $D+(x, y)$ and $D+(y, x)$ of G are acyclic, and let q_{i} denote the number of i-extendable acyclic orientations of $G-e$. By definition we have

$$
Q_{G}=q_{1}+2 q_{2}
$$

and

$$
Q_{G-e}=q_{0}+q_{1}+q_{2}
$$

The acyclic orientation D is not 0 -extendable. Indeed, if $D+(x, y)$ is not acyclic, then there is a directed cycle C. As D is acyclic, C must contain the directed edge (x, y). Then $C-(x, y)$ is a directed $y-x$ path P_{1} in D. Similarly, if $D+(y, x)$ is not acyclic, then there is a directed $x-y$ path P_{2} in D. Let z be the first vertex after y on $y P_{1} x$ that is also on $x P_{2} y$, which exists because they share another vertex x. By definition $y P_{1} z$ and $z P_{2} y$ are independent, so $y P_{1} z P_{2} y$ is a directed cycle in D, a contradiction. This means

$$
q_{0}=0
$$

Suppose D is 2-extendable. This means there are no directed $x-y$ or $y-x$ paths in D. In particular, each common neighbour of x and y either dominates both x and y or is dominated
by both x and y. As such, D descend $⿶^{1}$ naturally to an orientation D^{\prime} of G / e by identifying x and y.

If D^{\prime} contains a cycle C, as D is acyclic, C must pass through the vertex corresponding to x and y, but then it exhibits the existence of a directed $x-y$ or $y-x$ path in D, a contradiction, so D^{\prime} is acyclic. This process has a natural inverse ${ }^{2}$, assigning an orientation D of $G-e$ to a given acyclic orientation D^{\prime} of G / e. Furthermore, the act of "uncontracting" cannot possibly create a new directed cycle, so D is acyclic. This means

$$
Q_{G / e}=q_{2}
$$

Putting these four displayed equations together yields (a).
From (the solutions to) Exercise 5.18 of Diestel, we know that the chromatic polynomial satisfies

$$
P_{G}(k)=P_{G-e}(k)-P_{G / e}(k) .
$$

We apply induction on $\|G\|$ to prove

$$
Q_{G}=(-1)^{|G|} P_{G}(-1)
$$

For the base case, there are no edges, we have $P_{G}(k)=k^{|G|}$ and so $Q_{G}=(-1)^{|G|} P_{G}(-1)=1$. By part (a) and the induction hypothesis, we have

$$
\begin{aligned}
Q_{G} & =Q_{G-e}+Q_{G / e}=(-1)^{|G|} P_{G-e}(-1)+(-1)^{|G|-1} P_{G / e}(-1) \\
& =(-1)^{|G|}\left(P_{G-e}(-1)-P_{G / e}(-1)\right) \\
& =(-1)^{|G|} P_{G}(-1),
\end{aligned}
$$

as desired.
Grading. Failure to do one of the parts (correctly).

[^0]| Problem | Mean | Stdev | Mode |
| :---: | :---: | :---: | :---: |
| Problem 1 (7 points) | 6.00 | 1.33 | 7 |
| Problem 2 (7 points) | 5.50 | 1.46 | 7 |
| Problem 3 (7 points) | 4.92 | 2.72 | 7 |
| Problem 4 (7 points) | 5.06 | 2.29 | 7 |
| Problem 5 (7 points) | 5.00 | 2.58 | 7 |
| Problem 6 (7 points) | 5.00 | 2.68 | 7 |
| $\sum(35$ points total) | 23.94 | 7.96 | |

Counting multiplicities of $\{0,1, \ldots, 7\}$ for all problems and students, the most common score for a problem is 7 by far, followed by 4 and 6 , in that order.

Here are the letter grades and their corresponding ranges of total course score (out of 100).

Score Range	Letter Grade	Multiplicity
$85-$	A	4
$75-84$	$A-$	4
$65-74$	$B+$	1
$55-64$	B	3
$45-54$	$B-$	1
$35-44$	$C+$	4
$25-34$	C	1

[^0]: ${ }^{1}$ More explicitly (don't actually do this, I got bored writing the solutions so I'm just having some fun), let $p: V(G-e) \rightarrow V(G / e)$ be the map that sends x and y to $v_{x y}$, the vertex e contracts to, and is the identity otherwise. As an edge is an unordered pair, p induces $\tilde{p}: E(G-e) \rightarrow E(G / e)$, given by $\{u, v\} \mapsto\{p(u), p(v)\}$. An orientation of a graph (V, E) is in obvious bijection with a function $f: E \rightarrow V$ with $f(e) \in e$, recording the initial vertex, say, for each directed edge. By the discussion above, if f represents a 2 -extendable orientation D, then there exists a unique map \tilde{f} such that the following diagram commutes:

 ${ }^{2}$ Indeed, given \tilde{f}, there is a unique map f that makes the above diagram commutes.

