
Math 5707 Spring 2014

Math 5707 Exam 3

There are 6 problems, each worth 7 points. Turn in solutions for (at most) 5 of them.
If you turn in work for all 6 problems, an arbitrary subset of 5 problems will be graded. Be
sure to justify all your work: answers without sufficient justification will receive no credit.

Grading. The first two major errors cost 3 and 2 points, respectively. Minor errors cost
1 point each. Incoherent solutions are awarded a 0 without regard to the aforementioned
scheme. A subset of some common (major, unless otherwise labelled) errors are listed after
each problem.

Problem 1. Let G = (V,E) be a graph on n vertices and G its complement (see Diestel
§1.1). Prove the following inequalities involving the chromatic numbers χ(G) and χ(G).

(a) χ(G) · χ(G) ≥ n.
(b) χ(G) + χ(G) ≥ 2

√
n.

[Hint: Relate χ(G) with α(G), the size of the largest independent set. Use (a) for (b), even
if you didn’t manage to prove (a).]

Solution. Fix a colouring c ofG with a := χ(G) colours and a colouring c′ ofG with b := χ(G)
colours. On one hand, S := {(c(v), c′(v)) : v ∈ V } is a subset of [a]× [b], and so

|S| ≤ |[a]× [b]| = ab.

On the other hand, for each pair of distinct vertices u, v ∈ V (G) = V (G), note that uv ∈
E(G) t E(G), so u and v must be coloured differently in c or c′, and hence

|S| = n,

proving (i).
Taking the square root of

(a+ b)2 = a2 + 2ab+ b2 = (a2 − 2ab+ b2) + 4ab = (a− b)2 + 4ab ≥ 4ab

gives (ii). �

Grading. Failure to do one of the parts (correctly).

Problem 2. For n ∈ N, prove that there is a tournament on n vertices with at least n!21−n

directed Hamilton paths.
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Solution. Obtain a tournament T from Kn by choosing a direction for each edge indepen-
dently and randomly with probability 1/2 for either direction. Let X be the random variable
denoting the number of directed Hamilton paths. For each permutation σ = (v1, . . . , vn) of
the n vertices, let Xσ be the indicator that v1v2 . . . vn is a directed Hamilton path. For this
to happen, the n− 1 edges must be directed correctly. The probability of this happening is
21−n, as the edge directions are independent. Therefore, the expectation is E[Xσ] = 21−n.
As X =

∑
σXσ, where σ runs over all n! permutations of the vertex set, by linearity of

expectation, we have

E[X] =
∑
σ

E[Xσ] = n!21−n.

Since expectation is a (weighted) average, there is some orientation with at least E[X] =
n!21−n directed Hamilton paths, as desired. �

Grading. Using probability without (at least informally) defining a probability space, not
using independence.

Problem 3. There are n gnomes operating the gnomeship UMN Enterprise MATH-5707.
This ship has k ≤ n different stations, each of which must be occupied by a gnome who is
trained for that station. It is desired that any subset of k gnomes can operate the ship (in
the event that an arbitrary subset of n−k gnomes are killed sleeping). One way to do this is
to train all n gnomes for all k stations. However, as training is costly, the Gnome Resources
Allocation Provisioning Hegemony asks you to minimize the total number of gnomes trained
for the stations. To avoid being executed, you should propose a training scheme and prove
that it is optimal, in the sense that it is impossible to have fewer number of total trainings.
[Hint: The G.R.A.P.H. understands a graph theoretic proof if and only if its relation to the
present situation is made explicit.]

Solution. Let G = {g1, . . . , gn} be the set of n gnomes and S = {s1, . . . , sk} the set of k
stations. Create a bipartite graph (S,G,E) where a gnome g ∈ G is joined to a station s ∈ S
if and only if g is trained for s. Note that a subset H ⊆ G of k gnomes can operate the ship
if and only if there is a complete matching of S that matches each station to a gnome in H.
We wish to minimize the number of edges |E| in such a graph subject to this constraint.

Let E consists of a matching {sigi : 1 ≤ i ≤ k} and all edges between S and gi for i > k.
Let H ⊆ G be a set of |H| = k gnomes. Match each gi ∈ H with i ≤ k to si. Since the
remaining gnomes are trained for all possible stations, surely a matching exists. This shows
that |E| = k + (n− k)k works.

Conversely, suppose that (S,G,E) has fewer than k + (n − k)k = k(n − k + 1) edges.
Not all k stations can have degree at least n− k + 1, so some station si has degree at most
n− k. This means si has at least n− (n− k) = k non-neighbours in G. Pick a subset H of
k non-neighbours of si in G to show that no matching can cover si and H. �

Grading. Incorrect training scheme, incorrect proof that a training scheme works, failure to
establish a (correct) lower bound on the number of trainings required.

Problem 4. For n ≥ 3, prove that in any edge colouring of a Kn with 2 colours, there
is a Hamilton cycle that is the union of two monochromatic paths. [Hint: A path is
monochromatic if all its edges are coloured equally. A monochromatic Hamilton cycle is the
union of two monochromatic paths in many different ways.]
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Solution. Say a Hamilton cycle is k-part if it is a union of k independent monochromatic
paths. We first claim that it suffices to find a 3-part Hamilton cycle. Indeed, suppose a
Hamilton cycle is a union of three independent monochromatic paths P1, P2, P3. By the pi-
geonhole principle, using two colours (holes) for three paths (pigeons), at least two paths, say
P1 and P2, are coloured equally. As P1 and P2 necessarily intersect, P1 ∪ P2 is a monochro-
matic path, which, together with P3, shows that the Hamilton cycle is the union of two
monochromatic paths.

Apply induction on n. The base case n = 3 is immediate, as the three edges are indepen-
dent monochromatic paths (of length one) that form a 3-part Hamilton cycle.

Now let G = Kn+1 and colour the edges with colours red and blue. Fix a vertex v ∈ V (G)
and consider G − v. By induction, G − v has a 2-part Hamilton cycle v0v1 . . . vn, where
v0 = vn. WLOG, assume v0v1 . . . vk is (monochromatically) red, and vkvk+1 . . . vn is blue (or
contains no edges), for some 1 ≤ k ≤ n. Consider the colour of the edge vv0 = vvn. If
vvn is blue, then vv1 is monochromatic, v1v2 . . . vk is red, and vk . . . vnv is blue. This means
vv1 . . . vnv is a 3-part Hamilton cycle. Otherwise, vv0 is red. Set t = min{k, n − 1}. Then
vv0v1 . . . vt is (monochromatically) red, vtvt+1 . . . vn−1 is blue, and vn−1v is a monochromatic
path of length 1. This means vv0v1 . . . vn−1v is a 3-part Hamilton cycle. �

Grading. Not considering the case of a monochromatic Hamilton cycle in the inductive step,
or (minor) claiming it is easy without proof; considering too many cases (minor).

Problem 5. Formulate and prove the generalization of Ford–Fulkerson (Theorem 6.2.2)
for networks with multiple source and sink vertices. [Hint: In a network, we assumed that a
source vertex has only outgoing edges and a sink vertex has only incoming edges. You may
wish to redefine or clarify terms such as flow (and its total value) and cut (and its capacity).
Do not reinvent the wheel.]

Solution. Let D = (V,E) be a digraph and (D,S, T, c) be a generalized network, where S
and T are disjoint subsets of V consisting of source and sink vertices. As before, a source
(resp. sink) vertex has no incoming (resp. outgoing) edges. A flow f of N is a function
E → R such that f is conserved at every vertex x ∈ V \(S ∪ T ), and feasible at every edge
e ∈ E. A cut is a pair (X, Y ) of subsets partitioning V such that S ⊆ X and T ⊆ Y , and
c(X, Y ) is its capacity, as before. Define the total value of a flow f , denoted |f |, by f(S, V ).

Generalized Ford–Fulkerson states: In every generalized network, the maximum total value
of a flow equals the minimum capacity of a cut.

LetN = (D,S, T, c) be a generalized network. Define an ordinary networkN ′ = (D′, s′, t′, c′)
as follows: Start with N . Add a new vertex s′ to V ′ := V (D′) and, for each s ∈ S, add an
edge (s′, s) with capacity c(s, V ). Similarly, add a new vertex t′ to V ′ and, for each t ∈ T ,
add an edge (t, t′) with capacity c(V, t).

Given a flow f of N , define a flow f ′ of N ′ by setting the values on the new edges in
the only possible way to make f ′ conserved on the vertices of S t T . This clearly creates
a bijection between flows of N and flows of N ′. Furthermore, corresponding flows have the
same total value:

|f | = f(S, V ) = f ′({s′} ∪ S, V ′) = |f ′| .
In particular, the maximum total value of a flow of N is equal to the maximum total value
of a flow of N ′, which, by the ordinary Ford–Fulkerson Theorem, is equal to the minimum
capacity of a cut of N ′.
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It remains to show that this minimum capacity is the same for N as well. Take a cut
(X, Y ) of N , and consider the cut ({s′} ∪ X, Y ∪ {t′}) of N ′. As S ⊆ X and T ⊆ Y , the
new edges involving s′ or t′ do not appear in the sum c(X, Y ). The summands are exactly
the same as for c′({s′} ∪X, Y ∪ {t′}), and hence their capacities are equal. This means

min c(X, Y ) ≥ min c′(X ′, Y ′), (*)

where (X, Y ) runs over all cuts of N and (X ′, Y ′) runs over all cuts of N ′.
Finally, take a cut (X ′, Y ′) of N ′ with minimum capacity. Let X = X ′\{s′} and Y =

Y ′\{t′}. Note that (X, Y ) may not be a cut if X ′ and Y ′ do not contain S and T , respectively.
Suppose s ∈ S\X ′. Then

c′(X ′, Y ′) = c′(X ′, Y ′\{s}) + c′(X ′, s).

Note that c′(X ′, s) = c′(s′, s) = c(s, V ) = c′(s, V ′) ≥ c′(s, Y \{s}), so

c′(X ′, Y ′) ≥ c′(X ′, Y ′\{s}) + c′(s, Y \{s}) = c′(X ′ ∪ {s}, Y ′\{s}).
As c′(X ′, Y ′) was minimum over all cuts, the above is actually an equality. Therefore, we
may assume X ′ ⊇ S, and analogously assume Y ′ ⊇ T . Then (X, Y ) is in fact a cut of N ,
and therefore we have equality in (*), as desired. �

Grading. Not formulating the generalization.

Problem 6. An orientation is acyclic if it contains no (directed) cycles. Let QG denote
the number of acyclic orientations of a graph G.

(a) Prove that QG = QG−e +QG/e for each edge e ∈ E(G).
(b) Prove that QG = |PG(−1)|, where PG(k) is the chromatic polynomial defined in

Exercise 5.18 of Diestel.

[Hint: In fact, QG = (−1)|G|PG(−1).]

Solution. Let G be a graph and fix e = {x, y} ∈ E(G). Given an acyclic orientation of G,
by deleting the directed edge corresponding to e, no cycles would be created, and hence we
obtain an acyclic orientation of G− e.

Conversely, let D be an acyclic orientation of G−e. For i = {0, 1, 2}, say D is i-extendable
if exactly i of the orientations D + (x, y) and D + (y, x) of G are acyclic, and let qi denote
the number of i-extendable acyclic orientations of G− e. By definition we have

QG = q1 + 2q2

and
QG−e = q0 + q1 + q2.

The acyclic orientation D is not 0-extendable. Indeed, if D + (x, y) is not acyclic, then
there is a directed cycle C. As D is acyclic, C must contain the directed edge (x, y). Then
C − (x, y) is a directed y–x path P1 in D. Similarly, if D + (y, x) is not acyclic, then
there is a directed x–y path P2 in D. Let z be the first vertex after y on yP1x that is also
on xP2y, which exists because they share another vertex x. By definition yP1z and zP2y are
independent, so yP1zP2y is a directed cycle in D, a contradiction. This means

q0 = 0.

Suppose D is 2-extendable. This means there are no directed x–y or y–x paths in D. In
particular, each common neighbour of x and y either dominates both x and y or is dominated
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by both x and y. As such, D descends1 naturally to an orientation D′ of G/e by identifying
x and y.

If D′ contains a cycle C, as D is acyclic, C must pass through the vertex corresponding to
x and y, but then it exhibits the existence of a directed x–y or y–x path in D, a contradiction,
so D′ is acyclic. This process has a natural inverse2, assigning an orientation D of G − e
to a given acyclic orientation D′ of G/e. Furthermore, the act of “uncontracting” cannot
possibly create a new directed cycle, so D is acyclic. This means

QG/e = q2.

Putting these four displayed equations together yields (a).
From (the solutions to) Exercise 5.18 of Diestel, we know that the chromatic polynomial

satisfies
PG(k) = PG−e(k)− PG/e(k).

We apply induction on ‖G‖ to prove

QG = (−1)|G|PG(−1).

For the base case, there are no edges, we have PG(k) = k|G| and so QG = (−1)|G|PG(−1) = 1.
By part (a) and the induction hypothesis, we have

QG = QG−e +QG/e = (−1)|G|PG−e(−1) + (−1)|G|−1PG/e(−1)

= (−1)|G|
(
PG−e(−1)− PG/e(−1)

)
= (−1)|G|PG(−1),

as desired. �

Grading. Failure to do one of the parts (correctly).

1 More explicitly (don’t actually do this, I got bored writing the solutions so I’m just having some fun), let
p : V (G− e)→ V (G/e) be the map that sends x and y to vxy, the vertex e contracts to, and is the identity
otherwise. As an edge is an unordered pair, p induces p̃ : E(G−e)→ E(G/e), given by {u, v} 7→ {p(u), p(v)}.
An orientation of a graph (V,E) is in obvious bijection with a function f : E → V with f(e) ∈ e, recording the
initial vertex, say, for each directed edge. By the discussion above, if f represents a 2-extendable orientation
D, then there exists a unique map f̃ such that the following diagram commutes:

E(G− e) V (G− e)

E(G/e) V (G/e)

f

f̃

p̃ p

2Indeed, given f̃ , there is a unique map f that makes the above diagram commutes.
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Problem Mean Stdev Mode

Problem 1 (7 points) 6.00 1.33 7

Problem 2 (7 points) 5.50 1.46 7

Problem 3 (7 points) 4.92 2.72 7

Problem 4 (7 points) 5.06 2.29 7

Problem 5 (7 points) 5.00 2.58 7

Problem 6 (7 points) 5.00 2.68 7∑
(35 points total) 23.94 7.96

Counting multiplicities of {0, 1, . . . , 7} for all problems and students, the most common
score for a problem is 7 by far, followed by 4 and 6, in that order.

Here are the letter grades and their corresponding ranges of total course score (out of 100).

Score Range Letter Grade Multiplicity

85– A 4

75–84 A− 4

65–74 B+ 1

55–64 B 3

45–54 B− 1

35–44 C+ 4

25–34 C 1
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