
Math 5707 Spring 2014

Math 5707 Exam 2

There are 6 problems, each worth 7 points. Turn in solutions for (at most) 5 of them.
If you turn in work for all 6 problems, an arbitrary subset of 5 problems will be graded. Be
sure to justify all your work: answers without sufficient justification will receive no credit.

Grading. The first two major errors cost 3 and 2 points, respectively. Minor errors cost
1 point each. Incoherent solutions are awarded a 0 without regard to the aforementioned
scheme. A subset of some common (major, unless otherwise labelled) errors are listed after
each problem.

Problem 1. Given a graph G = (V,E) with δ(G) ≥ 2, prove that there is a connected
graph H on the same vertex set V such that dG(v) = dH(v) for all v ∈ V .

Solution. Apply induction on the number k of components of G. If k = 1, then we are done.
Suppose k > 1. Let G1 be a component of G. If G1 is minimally connected, then it is a tree
and has a leaf, contradicting δ(G1) ≥ δ(G) ≥ 2. As such, we may pick an edge e1 ∈ E(G1)
such that G1−e1 is connected. Similarly, let G2 be another component of G, and e2 ∈ E(G2)
such that G2 − e2 is connected. Let ei = xiyi. Certainly neither e3 := x1x2 nor e4 := y1y2
is an edge of G, lest G1 and G2 be connected. Let H = G − e1 − e2 + e3 + e4. Note that
dG(v) = dH(v) for all v ∈ V . Moreover, V (G1) ∪ V (G2) now forms a component, while the
other components are unaffected. So H has k − 1 components. By induction, there is a
connected graph H ′ on V , such that dH′(v) = dH(v) = dG(v) for all v ∈ V , as desired. �

Grading. Using an iterated algorithm without addressing termination (minor).

Problem 2. Let G be a planar graph on n vertices. Suppose k is the length of a shortest
cycle in G. Prove that G has at most (n− 2) k

k−2 edges.

Solution. Suppose a planar graph G on n vertices has a shortest cycle of length k. By
adding edges if necessary, we may assume that G is connected. Indeed, an upperbound for
the number of edges in the new graph implies the same upperbound for the original graph.
Fix a drawing of G, and let F be the set of faces. For f ∈ F , the boundary G[f ] contains
a cycle. Otherwise, G[f ] is a forest and it has only one face (Proposition 4.2.4). As such,
G[f ] ∪ f = R2, so G = G[f ] contains no cycles, a contradiction. As all cycles have lengths
at least k, we get that ‖G[f ]‖ ≥ k. Note that f is arbitrary, so this is true for every face.

Let θ be the number of flags (e, f) where e is an edge in the boundary of face f . We
have k |F | ≤ θ ≤ 2 |E|, as each edge e ∈ E is in the boundary of at most 2 faces, and each
face contains at least k edges in its boundary. Substituting |F | ≤ 2

k
|E| into Euler’s formula

n− |E|+ |F | = 2 gives the desired bound. �

Grading. Applying Euler’s formula to a disconnected graph, claiming that every face is
bounded by (a graph containing) a cycle, stating k |F | ≤ 2 |E| without justification.
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Problem 3. For k, ` ∈ N such that 1 ≤ k ≤ `, prove that there is a graph G with
connectivity κ(G) = k and edge-connectivity λ(G) = `.

[Hint: See Section 1.4 in Diestel for the definition of edge-connectivity λ(G), and note
that Proposition 1.4.2 explains why k ≤ ` is assumed.]

Solution. Let k, ` ∈ N be given such that 1 ≤ k ≤ `. Let G1 and G2 be disjoint copies of
a K`+1. Let A = {a1, . . . , ak} be a subset of k distinct vertices of G1, and B = {b1, . . . , b`}
be a subset of ` distinct vertices of G2. Let E ′ = {aibi : i ∈ [k]} ∪ {a1bj : j ∈ [`]\[k]},
and consider G = (G1 t G2) + E ′. Note that κ(Gi) = δ(Gi) = `, so by Proposition 1.4.2,
λ(Gi) = ` as well.

As each edge of E ′ intersects A, we have that G−A = (G1 −A) tG2 is disconnected, so
κ(G) ≤ |A| = k. To prove equality, delete a set S of at most k − 1 vertices from G. Each
G1 − S and G2 − S is connected, as κ(Gi) = ` > |S|. Moreover, as |S| < k, there exists
i ∈ [k] such that ai, bi /∈ S. Therefore ai ∈ V (G1 − S) and bi ∈ V (G2 − S) are connected
by an edge aibi in G − S. As such, by transitivity of connectivity, G − S is connected, as
desired.

Note that G−E ′ = G1tG2 is disconnected, so λ(G) ≤ |E ′| = `. To prove equality, delete
a set F of at most ` − 1 edges from G. As above, we know that each G1 − F and G2 − F
is connected, as `(Gi) = ` > |F |. Pick an edge aibj ∈ E ′\F . Then ai ∈ V (G1 − F ) and
bj ∈ V (G2 − F ) are connected by an edge in G− F , so G− F is connected, as desired. �

Grading. Failing to prove one of the four inequalities κ(G) ≤ k, κ(G) ≥ k, λ(G) ≤ `, or
λ(G) ≥ `.

Problem 4. Let G = (V,E) be a plane graph whose vertices are all on the boundary of
the outer face. Prove that there is a partition of V into two sets V1 and V2 such that each
induced subgraph G[V1] and G[V2] is a disjoint union of paths.

[Hint: Consider the parity of the distance d(x, y), defined in Section 1.3 of Diestel, from
a fixed vertex x.]

Solution. By adding edges if necessary, we may assume that G is connected. For vertices
x, y ∈ V , let the distance d(x, y) be the length of a shortest x–y path. Fix r ∈ V . By
connectivity, d(r, x) is well-defined, and either odd or even. If x ∈ V is at an odd distance
d(r, x) from r, put x ∈ V1. Otherwise put x ∈ V2.

Note that if G[Vi] contains an edge xy, then d(r, x) = d(r, y). Otherwise, suppose d(r, x)+
2 ≤ d(r, y). Take a shortest r–x path P . Note that y /∈ V (P ), lest d(r, y) < d(r, x). But
then rPxy is an r–y path of length d(r, x) + 1 < d(r, y), a contradiction.

Consider a connected subgraph H of some G[Vi], where |H| > 1. By the discussion above,
each x ∈ V (H) gives the same d(r, x). As r ∈ V2 and all its neighbours are in V1, and hence
r /∈ H. Let Px be a shortest r–x path. Note that Px intersects H only at x. If not, and it
contains another vertex y ∈ V (H), then rPxy is an r–y path shorter than d(r, x) = d(r, y),
a contradiction. Let U =

⋃
x∈V (H) Px, and let H ∗ r denote (H ∪U)/U , where vU , the vertex

corresponding to the branch set U , is identified with r. Note that H ∗ r is a minor of G.
If G[Vi] contains a H = K1,3, then H ∗ r contains a K2,3. If G[Vi] contains a H = Cn, then

H ∗ r contains a K4 as a minor (contract n− 2 contiguous vertices on the cycle Cn). Each
case is a contradiction to Exercise 4.22 of Diestel.

Therefore G[Vi] has maximum degree at most 2 and is acyclic, meaning that G[Vi] is a
disjoint union of (possibly trivial) paths. �
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Grading. Hand-waving instead of, say, citing Exercise 4.22. Given the large number of
crucial steps necessary, most other errors, e.g., failing to consider the disconnected case, are
considered minor.

Problem 5. For n ∈ N, prove that there exists a bipartite, 3-regular, planar graph with
2n vertices if and only if n ≥ 4 and n 6= 5.

Solution. Suppose n ≥ 4 is even. Draw C1 = x1x2 . . . xnx1 on the plane, and draw C2 =
y1y2 . . . yn in the interior face of C1. Add edges xiyi in an obvious way to get a 3-regular,
planar graph Gn. Moreover, x1, x3, . . . , xn−1, y2, y4, . . . , yn and its complement forms a bi-
partition for Gn.

Suppose n ≥ 7 is odd. Take Gn−1 defined above, remove edges xiyi for i ∈ {1, 3, 5}, and
draw a new vertex x (resp. y) in the outer (resp. inner) face of C1 (resp. C2) and join it to
x1, x3, x5 (resp. y1, y3, y5). This gives a bipartite, 3-regular, planar graph.

Conversely, let G be a bipartite, 3-regular graph on 2n vertices. As each vertex has degree
at most n, we have n ≥ 3. If n = 3, then G = K3,3 is not planar by Kuratowski. It remains
to show that if n = 5, then G contains a K3,3 minor, and therefore is not planar.

Note that G contains a C6. Suppose not, and let {M1,M2,M3} be a set of edge-disjoint
1-regular spanning subgraphs of G (1-factorisation, Corollary 2.1.3). As M1∪M2 is 2-regular,
it is either C4 t C6 or C10. Let v1v2 . . . v10v1 be the 10-cycle. If vivi+5 ∈ M3 for any i ∈ [5]
then there is a 6-cycle. Otherwise, WLOG, vivi+3 ∈ M3 for all odd i, with index read
modulo 10. Then v1v4v5v6v7v10v1 is a 6-cycle.

Let C = a1b1a2b2a3b3a1 be a 6-cycle in G. Suppose C is not induced, WLOG, C has a
chord a1b2. Each of S := {a4, a5, b4, b5}, being cubic, must be adjacent to (at least) one of
T := {b1, a2, a3, b3}. As vertices of T are cubic, there are (at most) four S–T edges. The
two (in)equalities imply that the remaining eight edges form a cycle on S and a matching
between S and T . Contract each of the four S–T edges to get a K3,3.

b3 a1

a3 b5 a4 b4 a5 b1

b2 a2

(a) a5 adjacent to b1

b3 a1

a3 b5

a4

b4a5

b1

b2 a2

(b) a5 adjacent to b3

Figure 1. C is an induced cycle

Otherwise, C is induced, and each of its vertices is adjacent to precisely one vertex in S,
and each in S is adjacent to at least one in C, as before. WLOG, a4 and b4 are adjacent to
two (a5 and b5 are adjacent to one) vertices of C, and hence there is a path a4b5a5b4 in G.
WLOG, we have edges a1b4, a2b4, a3b5. The remaining three edges depend (only) on whether
a5 is adjacent to b1. If a5b1 is an edge (see Figure 1a), then {a1, a2, a5} and {b1, b4, a4} form



Math 5707 4

branch vertices of a topological K3,3 minor, with subdivided paths a1b3a4, a2b2a4, and a5b5a4.
Otherwise, WLOG, a5b3 is an edge (see Figure 1b), then {a3, a4, a5} and {b2, b3, b5} form
branch vertices of a topological K3,3 minor, with subdivided paths a4b1a1b3 and a5b4a2b2. �

Grading. Hand-waving the n = 5 case, especially if not using Kuratowski; assuming all
boundaries are cycles.

Problem 6. For k ∈ N, let G = (V,E) be a k-connected graph. Suppose f : V → Z is
a function with integer values such that

∑
v∈V f(v) = 0 and

∑
v∈V |f(v)| = 2k, where |x| is

the absolute value of x. Prove that there are k independent paths such that |f(v)| of them
have v as an end for each v ∈ V .

Solution. Apply induction on k, which has trivial base case k = 0. For the inductive step,
let G′ be an IG obtained from G by replacing each vertex x ∈ V (G) with a branch set Vx,
where G′[Vx] is a complete graph of order max{1, |f(x)|}, and all Vx–Vy edges are present if
xy ∈ E(G).

Note that G′ is k-connected. Indeed, take S ′ ⊆ V (G′) with |S ′| < k. Contract G′ − S ′
along the branch sets Vx\S ′. The result is an induced subgraph G− S of G, where x ∈ S if
and only if Vx ⊆ S ′. As such, |S| ≤ |S ′| < k and, as G is k-connected, G − S is connected.
As contraction preserves connectedness (contracting an edge does not alter the number of
connected components), G′ − S ′ is connected, as desired.

Let A = {v ∈ V : f(v) > 0} and B = {v ∈ V : f(v) < 0}. Define A′ =
⊔

a∈A Va and
B′ =

⊔
b∈B Vb. Note that

|A′|+ |B′| =
∑
a∈A

|f(a)|+
∑
b∈B

|f(b)| = 2k

and
|A′| − |B′| =

∑
a∈A

f(a) +
∑
b∈B

f(b) = 0,

so |A′| = |B′| = k. By Menger’s theorem, as G′ is k-connected, there is a set of k disjoint
A′–B′ paths in G′. Note that each vertex of A′ and B′ is used. Contracting G′ along the Vx
then naturally maps these k disjoint A′–B′ paths to k independent A–B paths, where each
vertex x ∈ A t B has |Vx| = |f(x)| paths ending at it. As their interior vertices are disjoint
singleton branch sets, the paths with interior vertices remain distinct. For paths that are
single edges, it is possible that multiple edges between branch sets Vx and Vy are chosen. If
this is not the case, then we are done.

It remains to consider the case when there is an edge xy ∈ E(G) such that f(x) > 1,
f(y) < −1. By Menger’s theorem, G has k independent paths between any two vertices, so
G−xy has k−1 independent paths between any two vertices, and therefore G−xy is (k−1)-
connected by Menger’s theorem again. Modify f by decreasing f(x) by 1 and increasing f(y)
by 1 to get a new function f ′, which satisfies

∑
v∈V f

′(v) = 0 and
∑

v∈V |f ′(v)| = 2(k − 1).
By induction, G − xy has k − 1 independent paths such that |f ′(v)| of them have v as an
end for each v ∈ V . As the path xy has no interior vertices, it may be added to the set to
form k independent paths of G, as desired. �

Grading. Failure to consider edge ab with f(a) > 1 and f(b) < −1.
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Problem Mean Stdev Mode

Problem 1 (7 points) 4.71 3.00 7

Problem 2 (7 points) 1.82 1.51 2

Problem 3 (7 points) 5.07 3.05 7

Problem 4 (7 points) 2.57 2.44 0

Problem 5 (7 points) 3.50 2.73 4

Problem 6 (7 points) 1.50 2.55 0∑
(35 points total) 16.06 9.12

Counting multiplicities of {0, 1, . . . , 7} for all problems and students, the most common
score for a problem is 0, followed by 7, 4, and 2, in that order, indicating 0, 1, and 2 major
errors committed, respectively. Other scores are less frequently assigned.
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