
Math 5707 Spring 2014

Math 5707 Exam 1

There are 6 problems, each worth 7 points. Turn in solutions for (at most) 5 of them.
If you turn in work for all 6 problems, an arbitrary subset of 5 problems will be graded. Be
sure to justify all your work: answers without sufficient justification will receive no credit.

Grading. The first two major errors cost 3 and 2 points, respectively. Minor errors cost
1 point each. Incoherent solutions are awarded a 0 without regard to the aforementioned
scheme. A subset of some common (major, unless otherwise labelled) errors are listed after
each problem.

Problem 1. Once upon a time, there was a village with 23 gnomes. Every gnome gave
hats to 5 other gnomes. Is it possible that every gnome received hats from the same 5 gnomes
to whom he gave hats?

Solution. No. Suppose, towards a contradiction, that “giving hats” is mutual. Then we may
construct a graph G whose vertex set is the 23 gnomes and an edge is present between two
gnomes if and only if they presented hats to each other as presents. Being 5-regular, the
number of edges is evidently 1

2
· 23 · 5, which is absurd. �

Grading. Failing to relate a graph-theoretic setup to the actual problem (minor).

Problem 2. Let G = (V,E) be a graph on n = |V | vertices. Suppose that G− v is a tree
for every vertex v ∈ V .

(i) How many edges does G have?
(ii) Determine the structure of G.

Solution. The empty graph is not a tree, so we assume n ≥ 2. Let v ∈ V and note that the
tree G − v has n − 1 vertices hence n − 2 edges by the Tree Theorem. There are therefore
n − 2 + d(v) edges. Since v is arbitrary, we deduce that G is k-regular. Therefore there
are n − 2 + k = 1

2
nk edges. In other words, 0 = nk − 2n − 2k + 4 = (n − 2)(k − 2). If

n = 2, then G is a single edge or two disjoint vertices. Otherwise, k = 2 and G has n edges.
Each connected component has a closed Eulerian tour (Theorem 1.8.1), which necessarily is
a cycle. So G is a union of disjoint cycles. If there are multiple components, G− v is not a
tree (it is neither acyclic nor connected). So G = Cn is a cycle. �

Grading. Claiming that G − v is connected implies G is connected; omitting the case of
n = 2 or claiming G is 2-connected (minor).
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Problem 3. Devise an algorithm to perform the following task. Given a graph G = (V,E),
find a subset S ⊆ V of vertices such that the induced subgraph G[S] contains no edges, and
that

|S| ≥ |V |
∆(G) + 1

,

where ∆(G) denotes the maximum degree of the graph G.

Solution. Consider the näıve algorithm:

(i) Let S = ∅.
(ii) Pick a vertex v ∈ V , add it to S, and delete v and N(v) from V .

(iii) Repeat until V = ∅.

If x, y ∈ S, and x was added first, then y is not a neighbour of x, lest it be deleted from V
prematurely. Furthermore, in each round, we delete at most ∆(G) + 1 vertices from V , so

we can run this at least |V |
∆(G)+1

rounds. �

Grading. Failing to explain why G[S] is edgeless or |S| is big. (As a corollary, stating an
algorithm without justification would get at most 2 points.)

Problem 4. Let n ∈ N be positive. For each pair of integers x and y such that 1 ≤ x ≤
y ≤ n, take a card and label one side with x and the other with y.

(i) How many cards are there?

Put these cards on top of each other to form a deck, such that sides touching each other have
equal labels, i.e., the back of a card has the same label as the front of the next card. You
are allowed to flip over the cards when assembling such a deck. Note that a deck of cards
have two numbers showing: the front of the first card and the back of the last card. We say
that a deck is orderly if these two numbers are also equal.

(For example, write [x, y] for a card with x on the front and y on the back. If n = 3,
the following represents an orderly deck: [1, 2], [2, 2], [2, 3], [3, 3], [3, 1], [1, 1]. Note that [3, 1]
is the card [1, 3] flipped over.)

(ii) Prove that it is possible to assemble an orderly deck using every card if and only if
n is odd.

[Hint: Relate this to Euler tours of some graph.]

Solution. There are
(
n
1

)
cards with the same number on both sides and

(
n
2

)
cards with

different numbers. So there are
(
n+1

2

)
total. We follow the notation in the problem statement.

Consider the complete graph Kn on vertex set {1, . . . , n}, which admits a closed Euler tour
if and only if n is odd by Theorem 1.8.1. If there is a closed Euler tour v0e1v1e2v2 . . . ekvk,
v0 = vk, then we can assemble an orderly deck as follows: take [v0, v1], [v1, v2], . . . , [vk−1, vk],
and insert [i, i] before the first occurrence of [i, j], i 6= j. Conversely, if there is an orderly
deck, omit [i, i] for each i to obtain a sequence of cards [v0, v1], [v1, v2], . . . , [vk−1, vk], and
construct a closed Euler tour v0e1v1e2v2 . . . ekvk, where ei = {vi−1, vi}. �

Grading. Miscalculating (i); failing to explain how an Euler tour can be used to construct
an orderly deck or vice versa; disregarding cards [x, x] in either of the cases above.
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Problem 5. (Exercise 2.9 in Diestel.) Let A be a finite set with subsets A1, . . . , An, and
let d1, . . . , dn ∈ N. Show that there are (pairwise) disjoint subsets Dk ⊆ Ak, with |Dk| = dk
for all k ≤ n, if and only if ∣∣∣∣∣⋃

i∈I

Ai

∣∣∣∣∣ ≥∑
i∈I

di (*)

for all I ⊆ {1, . . . , n}. [Hint: Construct a bipartite graph in which A is one side, and the
other side consists of a suitable number of copies of the sets Ai. Define the edge set of the
graph so that the desired result can be derived from the marriage theorem.]

Solution. Suppose the Dk exist as above. Then
⋃

i∈I Ai ⊇
⊔

i∈I Di, where the disjoint union
of the Dk has cardinality

∑
i∈I di, yielding (*).

Conversely, suppose (*) is satisfied for all I ⊆ [n] := {1, . . . , n}. We adopt the convention
that [0] := ∅. Let Aj

k be a copy of Ak, for j ∈ [dk]. Let G be a bipartite graph with A as the

set of vertices on the right, and {Aj
k : k ∈ [n], j ∈ [dk]} as the set of vertices on the left. Let

a ∈ A be joined to Aj
k if and only if a ∈ Aj

k = Ak. For a collection S of vertices of the left, let

I = {i ∈ [n] : Aj
i ∈ S for some j ∈ [di]}, and note that N(S) =

⋃
i∈I Ai, so |N(S)| ≥

∑
i∈I di

by (*). Since there are at most di copy of each Ai, we have |S| ≤
∑

i∈I di, and hence Hall’s
condition is satisfied. Let M be a complete matching from the left to the right as afforded
by Hall’s matching theorem. Let ajk ∈ A be the vertex matched with Aj

k, k ∈ [n], j ∈ [dk].

Note that the ajk are distinct. Then for k ∈ [n], Dk = {ajk : j ∈ [dk]} are disjoint subsets of
Ak with |Dk| = dk, as desired. �

Grading. Incorrect construction of the bipartite graph; insufficient explanation of what a
complete matching has to do with the given problem; failure to address one direction of the
implication.

Problem 6. (Exercise 2.11 in Diestel.) Let G be a bipartite graph with bipartition {A,B}.
Assume that δ(G) ≥ 1, and that d(a) ≥ d(b) for every edge ab with a ∈ A. Show that G
admits a complete matching from A to B. [Hint: Intuitively, the edges between a set S ⊆ A
and N(S) create larger degrees in S than in N(S), so they must be spread over more vertices
of N(S) than of S. To make this precise, count both S and N(S) as a sum indexed by those
edges. Alternatively, consider a minimal set S violating the marriage condition, and count
the edges between S and N(S) in two ways.]

Solution. Let S ⊆ A, and let T = N(S). Now

|S| =
∑

ab∈E(S,T )

1

d(a)
≤

∑
ab∈E(S,T )

1

d(b)
≤

∑
ab∈E(A,T )

1

d(b)
= |T | ,

where a ∈ A and b ∈ B for all three summations. The existence of a complete matching
follows from Hall’s matching theorem.

Alternatively, suppose, towards a contradiction, that S ⊆ A is minimal such that |S| > |T |,
with T = N(S). Fix v ∈ S and note that by minimality of S, there is a complete matching
M from S−v to T . As |T | ≤ |S|−1 = |S − v| ≤ |T |, actually |T | = |S|−1, and M covers T .
Therefore

|E(S, T )| =
∑
a∈S

d(a) = d(v) +
∑
ab∈M

d(a) >
∑
ab∈M

d(b) = |E(A, T )| ≥ |E(S, T )| ,
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where the strict inequality comes from δ(G) ≥ 1, a contradiction. �

Grading. Assuming E(S, T ) = E(A, T ); not using minimality of S or a matching M in the
second proof; not using δ(G) ≥ 1.

Problem Mean Stdev

Problem 1 (7 points) 6.38 1.97

Problem 2 (7 points) 3.08 2.59

Problem 3 (7 points) 4.63 2.42

Problem 4 (7 points) 4.39 2.73

Problem 5 (7 points) 3.87 2.59

Problem 6 (7 points) 2.61 3.01∑
(35 points total) 21.13 9.21
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