
Math 5707 Spring 2014

Math 5707 Exam 1

Due at the beginning of lecture on Wednesday, March 5, 2014.

Please staple this sheet to the front of your solutions.

There are 6 problems, each worth 7 points. Turn in solutions for (at most) 5 of them.
If you turn in work for all 6 problems, an arbitrary subset of 5 problems will be graded. Be
sure to justify all your work: answers without sufficient justification will receive no credit.

You may use resources such as books and the Internet. Do not collaborate or consult
human sources besides the instructor. Clearly indicate any outside sources consulted, and
make sure to understand the solutions sufficiently to explain them in your own words. So-
lutions which the instructor views as insignificant alterations of outside sources will receive
no credit.
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Problem 1. Once upon a time, there was a village with 23 gnomes. Every gnome gave
hats to 5 other gnomes. Is it possible that every gnome received hats from the same 5 gnomes
to whom he gave hats?

Problem 2. Let G = (V,E) be a graph on n = |V | vertices. Suppose that G− v is a tree
for every vertex v ∈ V .

(i) How many edges does G have?
(ii) Determine the structure of G.

Problem 3. Devise an algorithm to perform the following task. Given a graph G = (V,E),
find a subset S ⊆ V of vertices such that the induced subgraph G[S] contains no edges, and
that

|S| ≥
|V |

∆(G) + 1
,

where ∆(G) denotes the maximum degree of the graph G.

Problem 4. Let n ∈ N be positive. For each pair of integers x and y such that 1 ≤ x ≤
y ≤ n, take a card and label one side with x and the other with y.

(i) How many cards are there?

Put these cards on top of each other to form a deck, such that sides touching each other have
equal labels, i.e., the back of a card has the same label as the front of the next card. You
are allowed to flip over the cards when assembling such a deck. Note that a deck of cards
have two numbers showing: the front of the first card and the back of the last card. We say
that a deck is orderly if these two numbers are also equal.
(For example, write [x, y] for a card with x on the front and y on the back. If n = 3,

the following represents an orderly deck: [1, 2], [2, 2], [2, 3], [3, 3], [3, 1], [1, 1]. Note that [3, 1]
is the card [1, 3] flipped over.)

(ii) Prove that it is possible to assemble an orderly deck using every card if and only if
n is odd.

[Hint: Relate this to Euler tours of some graph.]

Problem 5. (Exercise 2.9 in Diestel.) Let A be a finite set with subsets A1, . . . , An, and
let d1, . . . , dn ∈ N. Show that there are (pairwise) disjoint subsets Dk ⊆ Ak, with |Dk| = dk
for all k ≤ n, if and only if
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for all I ⊆ {1, . . . , n}. [Hint: Construct a bipartite graph in which A is one side, and the
other side consists of a suitable number of copies of the sets Ai. Define the edge set of the
graph so that the desired result can be derived from the marriage theorem.]

Problem 6. (Exercise 2.11 in Diestel.) Let G be a bipartite graph with bipartition {A,B}.
Assume that δ(G) ≥ 1, and that d(a) ≥ d(b) for every edge ab with a ∈ A. Show that G

admits a complete matching from A to B. [Hint: Intuitively, the edges between a set S ⊆ A

and N(S) create larger degrees in S than in N(S), so they must be spread over more vertices
of N(S) than of S. To make this precise, count both S and N(S) as a sum indexed by those
edges. Alternatively, consider a minimal set S violating the marriage condition, and count
the edges between S and N(S) in two ways.]
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