Math 4990 Problem Set 10

Partial solutions and comments

Problem	Points	Mean
Exercise 6.17	2	1.2
Exercise 6.22	2	1.2
Exercise 6.30	2	1.4
Problem 4	2	1.8
Problem 5	2	1.8
\sum	10	7.4

Exercise 6.17. By recalling that each edge belongs to precisely two faces from the local topology condition, you can resolve the so-called ambiguity in the picture.

Exercise 6.30.

Proof. For a face f containing a vertex v, denoted $f \ni v$ or $v \in f$, let $a(f, v)$ be the angle of f at v. Let n_{f} be the number of sides of f. Let V_{I} and V_{B} denote the number of vertices in the interior and on the boundary, respectively. Of course, the total number of vertices is given by $V=V_{I}+V_{B}$, and the number of edges on the boundary is V_{B}. Tracking the proof of Theorem 6.25 , we see

$$
\begin{aligned}
\omega & =\sum_{v \in P \backslash \partial P} K(v)=\sum_{v \in P \backslash \partial P}\left(2 \pi-\sum_{f \ni v} a(f, v)\right) \\
\tau & =\sum_{v \in \partial P} K(v)=\sum_{v \in \partial P}\left(\pi-\sum_{f \ni v} a(f, v)\right),
\end{aligned}
$$

where π is substituted for 2π in τ by definition (see page 174). Summing yields

$$
\begin{aligned}
\omega+\tau & =\sum_{v \in P \backslash \partial P} 2 \pi+\sum_{v \in \partial P} \pi-\sum_{v \in P} \sum_{f \ni v} a(f, v) \\
& =2 \pi V_{I}+\pi V_{B}-\sum_{f \in P} \sum_{v \in f} a(f, v) \\
& =2 \pi V_{I}+\pi V_{B}-\sum_{f \in P}\left(n_{f}-2\right) \pi .
\end{aligned}
$$

Now $\sum_{f \in P} n_{f}$ double counts each edge, except for edges on the boundary, each of which is counted only once. As such, $\sum_{f \in P} n_{f}=2 E-V_{B}$. Substituting yields

$$
2 \pi V_{I}+\pi V_{B}-\pi\left(\left(2 E-V_{B}\right)-2 F\right)=2 \pi \chi(P)
$$

as desired.

