Math 4990 Problem Set 9

Partial solutions and comments

Problem	Points	Mean
Problem 1	3	2.8
Problem 2	3	2.0
Problem 3	7	5.8
\sum	13	10.5

Let T_n be the number of domino tilings of a $2 \times n$ region.

Problem 1. Prove that $T_{a+b} = T_a T_b + T_{a-1} T_{b-1}$.

Proof. The LHS is the number of ways to tile a $2 \times (a + b)$ region by dominoes. Consider a tiling of such a region. Let line L cut the region into a $2 \times a$ on the left and a $2 \times b$ on the right. A tiling either has no dominoes crossing L or two dominoes crossing L (why?). There are T_aT_b tilings of the first type and $T_{a-1}T_{b-1}$ tiling of the second type (why?), which gives the RHS.

Problem 2. Prove that $\binom{n}{1}T_0 + \binom{n}{2}T_1 + \cdots + \binom{n}{n}T_{n-1} = T_{2n-1}$.

Proof. The RHS is the number of ways to tile a $2 \times (2n-1)$ region by dominoes.

For a tiling, count the number of vertical dominoes amongst the left n tiles of the top row. (Obviously the vertical dominoes protrude to the bottom row.) Call this number the *cuteness* of the tiling.

Count the number of tilings with cuteness *i*. Of the first *n* tiles on the top row, there are *i* vertical and n - i horizontal dominoes by definition. They have a combined width of i + 2(n - i) = 2n - i. As such, there are $\binom{n}{i}$ ways to tile the first 2n - i columns: by deciding which of the *n* dominoes on the top row are vertical, and then filling the second row with horizontal dominoes in the obvious way. It then remains to tile a region of width (2n - 1) - (2n - i) = i - 1 using dominoes. There are T_{i-1} ways to do so. Thus there are $\binom{n}{i}T_{i-1}$ tilings of cuteness *i*.

By definition, each tiling has a cuteness between 0 and n. However, cuteness 0 is impossible, as that would mean we have (at least) n horizontal dominoes on the top row, which cannot fit within a region with width 2n - 1. Therefore we conclude that the total number of tilings is $\sum_{i=1}^{n} {n \choose i} T_{i-1}$, which is the LHS.

The most common mistake is to not explain why i = 0 is impossible. It is incorrect to use the argument that as 2n - 1 is odd, there is at least 1 vertical tile. Indeed, we are not counting the number of vertical tiles, but vertical tiles amongst the first n tiles of the top row.

Problem 3. Each part is worth a point. Half a point is taken off if there is insufficient justification.