Math 4990 Problem Set 9

Partial solutions and comments

Problem	Points	Mean
Problem 1	3	2.8
Problem 2	3	2.0
Problem 3	7	5.8
\sum	13	10.5

Let T_{n} be the number of domino tilings of a $2 \times n$ region.
Problem 1. Prove that $T_{a+b}=T_{a} T_{b}+T_{a-1} T_{b-1}$.
Proof. The LHS is the number of ways to tile a $2 \times(a+b)$ region by dominoes. Consider a tiling of such a region. Let line L cut the region into a $2 \times a$ on the left and a $2 \times b$ on the right. A tiling either has no dominoes crossing L or two dominoes crossing L (why?). There are $T_{a} T_{b}$ tilings of the first type and $T_{a-1} T_{b-1}$ tiling of the second type (why?), which gives the RHS.

Problem 2. Prove that $\binom{n}{1} T_{0}+\binom{n}{2} T_{1}+\cdots+\binom{n}{n} T_{n-1}=T_{2 n-1}$.
Proof. The RHS is the number of ways to tile a $2 \times(2 n-1)$ region by dominoes.
For a tiling, count the number of vertical dominoes amongst the left n tiles of the top row. (Obviously the vertical dominoes protrude to the bottom row.) Call this number the cuteness of the tiling.

Count the number of tilings with cuteness i. Of the first n tiles on the top row, there are i vertical and $n-i$ horizontal dominoes by definition. They have a combined width of $i+2(n-i)=2 n-i$. As such, there are $\binom{n}{i}$ ways to tile the first $2 n-i$ columns: by deciding which of the n dominoes on the top row are vertical, and then filling the second row with horizontal dominoes in the obvious way. It then remains to tile a region of width $(2 n-1)-(2 n-i)=i-1$ using dominoes. There are T_{i-1} ways to do so. Thus there are $\binom{n}{i} T_{i-1}$ tilings of cuteness i.

By definition, each tiling has a cuteness between 0 and n. However, cuteness 0 is impossible, as that would mean we have (at least) n horizontal dominoes on the top row, which cannot fit within a region with width $2 n-1$. Therefore we conclude that the total number of tilings is $\sum_{i=1}^{n}\binom{n}{i} T_{i-1}$, which is the LHS.

The most common mistake is to not explain why $i=0$ is impossible. It is incorrect to use the argument that as $2 n-1$ is odd, there is at least 1 vertical tile. Indeed, we are not counting the number of vertical tiles, but vertical tiles amongst the first n tiles of the top row.

Problem 3. Each part is worth a point. Half a point is taken off if there is insufficient justification.

