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Partial solutions and comments

Problem Points Mean

Exercise 3.19 2 1.9
Exercise 3.20 2 1.8
Exercise 4.4 2 2.0
Exercise 4.5 2 1.7
Problem 5 2 1.5
Problem 6 2 1.1∑

12 9.6

Problem 5. Let G be a graph that is maximally planar with at least 4 vertices. Suppose
vertices a, b, c are pairwise joined by edges. Show that G has a vertex v distinct from a, b, c
such that the degree of v is at most five.

Note that this is a strengthening of Exercise 3.14 we used in class for the proof of Fáry
theorem.

Proof. Let G be a graph on n ≥ 4 vertices. The degree of every vertex is at least 3 (why?).
Assume, towards a contradiction, that such v cannot be found. Then a, b, c each has degree

at least 3 and the other n− 3 vertices each has degree at least six. The sum of the degrees
is therefore at least 6(n − 3) + 9. On the other hand, the sum of the degrees is twice the
number of edges, which is 3n − 6 as shown in class. As such, we get 6n − 12 ≥ 6n − 9, a
contradiction. �

Do not reinvent the wheel, use the bound 3n− 6 proved in class! Most common mistake
is claiming that a, b, c each has degree at least 6 as well.

Problem 6. Recall that the number of triangulations of a convex (n+2)-gon is the Catalan
number Cn. For infinitely many values of n, construct two sets S, S ′ ⊂ R2 each with n + 2
points such that the number of triangulations of S is greater than Cn and the number of
triangulations of S ′ is nonzero but less than Cn. (See Exercises 3.15 and 3.18.)

Proof. Let us use the “double chain” construction of Exercise 3.18 for S. Suppose there are
m+ 1 vertices in each chain. The connecting edges in each chain are always present, but we
don’t need this fact, as we just need a lower bound on the number of triangulations. Indeed,
suppose they are present, and count only these triangulations. We may triangulate the top
and bottom convex (m + 1)-gons in Cm−1 different ways each. The middle portion consists
of m upward- and m downward-pointing triangles in any order, so there are

(
2m
m

)
ways to

triangulate. As such, there are (at least) Cm−1
(
2m
m

)
Cm−1 triangulations.

We compare this with Cn, where n+2 = 2(m+1) is even. First, recall that
∑t

i=0

(
t
i

)
= 2t,

so
Cn = 1

n+1

(
2n
n

)
<
(
2n
n

)
< 22n = 24m = 16m.
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On the other hand, (
2t+2
t+1

)(
2t
t

) =
(2t + 2)(2t + 1)

(t + 1)(t + 1)
= 2(2 − 1

t+1
) ≥ 3

implies (
2t
t

)
≥ c · 3t

for some absolute constant c. Substituting yields

Cm−1
(
2m
m

)
Cm−1 ≥ c′ · 3m

m
· 3m · 3m

m
= c′ · 27m

m2
,

where c′ is another absolute constant (explicitly, c′ = c3/9 works; however, when perform-
ing analysis on asymptotics, it’s best not to unnecessarily care about the constants). For
sufficiently large m, we get

Cn < 16m < c′ · 27m

m2
≤ Cm−1

(
2m
m

)
Cm−1,

as desired. (We can figure out how large m has to be for the inequalities to hold. However,
as we only care about “infinitely many values of n = 2m,” we can stop here and rest assured
that all large m works.) �

Most people lost a point for not providing a proof of the inequality.
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