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Partial solutions and comments

| Problem | Points [ Mean |

Exercise 3.19 2 1.9
Exercise 3.20 2 1.8
Exercise 4.4 2 2.0
Exercise 4.5 2 1.7
Problem 5 2 1.5
Problem 6 2 1.1
> 1 o5

Problem 5. Let G be a graph that is maximally planar with at least 4 vertices. Suppose
vertices a, b, ¢ are pairwise joined by edges. Show that G has a vertex v distinct from a, b, ¢
such that the degree of v is at most five.

Note that this is a strengthening of Exercise 3.14 we used in class for the proof of Fary
theorem.

Proof. Let G be a graph on n > 4 vertices. The degree of every vertex is at least 3 (why?).

Assume, towards a contradiction, that such v cannot be found. Then a, b, ¢ each has degree
at least 3 and the other n — 3 vertices each has degree at least six. The sum of the degrees
is therefore at least 6(n — 3) + 9. On the other hand, the sum of the degrees is twice the
number of edges, which is 3n — 6 as shown in class. As such, we get 6n — 12 > 6n — 9, a
contradiction. O

Do not reinvent the wheel, use the bound 3n — 6 proved in class! Most common mistake
is claiming that a, b, ¢ each has degree at least 6 as well.

Problem 6. Recall that the number of triangulations of a convex (n+2)-gon is the Catalan
number C,,. For infinitely many values of n, construct two sets S, 8" C R? each with n + 2
points such that the number of triangulations of S is greater than (), and the number of
triangulations of S’ is nonzero but less than C,,. (See Exercises 3.15 and 3.18.)

Proof. Let us use the “double chain” construction of Exercise 3.18 for S. Suppose there are
m + 1 vertices in each chain. The connecting edges in each chain are always present, but we
don’t need this fact, as we just need a lower bound on the number of triangulations. Indeed,
suppose they are present, and count only these triangulations. We may triangulate the top
and bottom convex (m + 1)-gons in C,,_; different ways each. The middle portion consists
of m upward- and m downward-pointing triangles in any order, so there are (2::) ways to

triangulate. As such, there are (at least) C,_; (i?) C\n—1 triangulations.

We compare this with C,,, where n+2 = 2(m+1) is even. First, recall that Zfzo (f) =2t
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On the other hand,
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for some absolute constant c¢. Substituting yields
3m 3m o7m
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where ¢ is another absolute constant (explicitly, ¢ = ¢3/9 works; however, when perform-
ing analysis on asymptotics, it’s best not to unnecessarily care about the constants). For
sufficiently large m, we get

m

C, <16™ < c - % < Ch-1 (27;”)07,171,

as desired. (We can figure out how large m has to be for the inequalities to hold. However,
as we only care about “infinitely many values of n = 2m,” we can stop here and rest assured
that all large m works.) O

Most people lost a point for not providing a proof of the inequality.
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