Math 4990 Problem Set 7

Partial solutions and comments

Problem	Points	Mean
Exercise 3.19	2	1.9
Exercise 3.20	2	1.8
Exercise 4.4	2	2.0
Exercise 4.5	2	1.7
Problem 5	2	1.5
Problem 6	2	1.1
\sum	12	9.6

Problem 5. Let G be a graph that is maximally planar with at least 4 vertices. Suppose vertices a, b, c are pairwise joined by edges. Show that G has a vertex v distinct from a, b, c such that the degree of v is at most five.

Note that this is a strengthening of Exercise 3.14 we used in class for the proof of Fáry theorem.

Proof. Let G be a graph on $n \geq 4$ vertices. The degree of every vertex is at least 3 (why?).
Assume, towards a contradiction, that such v cannot be found. Then a, b, c each has degree at least 3 and the other $n-3$ vertices each has degree at least six. The sum of the degrees is therefore at least $6(n-3)+9$. On the other hand, the sum of the degrees is twice the number of edges, which is $3 n-6$ as shown in class. As such, we get $6 n-12 \geq 6 n-9$, a contradiction.

Do not reinvent the wheel, use the bound $3 n-6$ proved in class! Most common mistake is claiming that a, b, c each has degree at least 6 as well.

Problem 6. Recall that the number of triangulations of a convex $(n+2)$-gon is the Catalan number C_{n}. For infinitely many values of n, construct two sets $S, S^{\prime} \subset \mathbb{R}^{2}$ each with $n+2$ points such that the number of triangulations of S is greater than C_{n} and the number of triangulations of S^{\prime} is nonzero but less than C_{n}. (See Exercises 3.15 and 3.18.)
Proof. Let us use the "double chain" construction of Exercise 3.18 for S. Suppose there are $m+1$ vertices in each chain. The connecting edges in each chain are always present, but we don't need this fact, as we just need a lower bound on the number of triangulations. Indeed, suppose they are present, and count only these triangulations. We may triangulate the top and bottom convex $(m+1)$-gons in C_{m-1} different ways each. The middle portion consists of m upward- and m downward-pointing triangles in any order, so there are $\binom{2 m}{m}$ ways to triangulate. As such, there are (at least) $C_{m-1}\binom{2 m}{m} C_{m-1}$ triangulations.

We compare this with C_{n}, where $n+2=2(m+1)$ is even. First, recall that $\sum_{i=0}^{t}\binom{t}{i}=2^{t}$, so

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}<\binom{2 n}{n}<2^{2 n}=2^{4 m}=16^{m} .
$$

On the other hand,

$$
\frac{\binom{2 t+2}{t+1}}{\binom{2 t}{t}}=\frac{(2 t+2)(2 t+1)}{(t+1)(t+1)}=2\left(2-\frac{1}{t+1}\right) \geq 3
$$

implies

$$
\binom{2 t}{t} \geq c \cdot 3^{t}
$$

for some absolute constant c. Substituting yields

$$
C_{m-1}\binom{2 m}{m} C_{m-1} \geq c^{\prime} \cdot \frac{3^{m}}{m} \cdot 3^{m} \cdot \frac{3^{m}}{m}=c^{\prime} \cdot \frac{27^{m}}{m^{2}}
$$

where c^{\prime} is another absolute constant (explicitly, $c^{\prime}=c^{3} / 9$ works; however, when performing analysis on asymptotics, it's best not to unnecessarily care about the constants). For sufficiently large m, we get

$$
C_{n}<16^{m}<c^{\prime} \cdot \frac{27^{m}}{m^{2}} \leq C_{m-1}\binom{2 m}{m} C_{m-1}
$$

as desired. (We can figure out how large m has to be for the inequalities to hold. However, as we only care about "infinitely many values of $n=2 m$," we can stop here and rest assured that all large m works.)

Most people lost a point for not providing a proof of the inequality.

