Math 4990 Problem Set 9

Due Tuesday, Nov 10, 2015 in class

Please refer to previous problem sets for instructions, including but not limited to the collaboration policy.

Assignment

Let T_n be the number of domino tilings of a $2 \times n$ region. Recall the *linear recurrence relation*

$$T_n = T_{n-1} + T_{n-2} \tag{(*)}$$

for $n \ge 3$. Using (*) for n = 2 suggests that it is sensible to define $T_0 = 1$. For the rest of the problem set, it is advisable to **NOT** use (*). That is, each time you see T_n , interpret it as "number of tilings" as opposed to the actual number.

Problem 1. Prove that $T_{a+b} = T_a T_b + T_{a-1} T_{b-1}$.

Problem 2. Prove that $\binom{n}{1}T_0 + \binom{n}{2}T_1 + \cdots + \binom{n}{n}T_{n-1} = T_{2n-1}$. [**Hint:** Associate a number *i* to each domino tiling of a $2 \times (2n-1)$ region, $1 \le i \le n$, such that there are $\binom{n}{i}T_{i-1}$ tilings associated with *i*.]

Problem 3. Let f(n) denote the number of domino tilings of a $3 \times n$ region, and let g(n) denote the number of domino tilings of the same region but with one corner square removed.

- (1) Calculate f(n) and g(n) from their definitions for $1 \le n \le 4$.
- (2) Write f(n) in terms of f(a) and g(b) for some a, b < n.
- [**Hint:** Follow the idea that allowed us to find (*).]
- (3) Similarly, write a recurrence relation for g(n) in terms of f and g.
- (4) Using the recurrence relations, define f(0) and g(0) sensibly.
- (5) Obtain a linear recurrence relation of f alone by eliminating g.
- (6) Let h(n) = f(2n) and calculate h(n) for $0 \le n \le 9$.
 - [Hint: One way to do this is by using Wolfram Alpha. For example, to get the first ten Fibonacci numbers, go to http://www.wolframalpha.com, enter

and click "more" on the result page.

- (7) What is the number of domino tilings of a 3×40 region?
 - [Hint: One way to do this is by using the On-Line Encyclopedia of Integer Sequences. Go to http://oeis.org and search with the first few terms of the sequence.]