Math 4990 Scissors congruence and Dehn invariants

JED YANG

§1. Q-vector spaces. For $M = \{m_1, \ldots, m_k\} \subseteq \mathbb{R}$, let

$$V(M) := \left\{ \sum_{i=1}^{k} q_i m_i : q_i \in \mathbb{Q} \right\} \subseteq \mathbb{R}$$

denote the set of all linear combinations of numbers in M with rational coefficients.

Note that V(M) is a finite-dimensional vector space over the field \mathbb{Q} .

The dimension is the size of any minimal generating set. As M generates,

$$\dim_{\mathbb{Q}} V(M) \le k = |M|.$$

Considering \mathbb{Q} as a 1-dimensional vector space over itself, a linear map

 $f:V(M)\to\mathbb{Q}$

of \mathbb{Q} -vector spaces is a \mathbb{Q} -linear function, which satisfies these properties:

- (i) f(x) + f(y) = f(x+y) for $x, y \in V(M)$
- (ii) f(qx) = qf(x) for $x \in V(M), q \in \mathbb{Q}$

§2. Dehn invariants. Let P be a 3-dimensional polyhedron. For an edge e of P, let $\ell(e)$ denote its length, and $\phi_P(e)$ its **dihedral angle**, defined as the angle between the two faces meeting at e. (If n_1 and n_2 are *outward* unit normal vectors of the faces in question, then $n_1 \cdot n_2 = -\cos(\phi_P(e))$. [DO] is missing a negative sign.)

Let M_P be the set of all dihedral angles of P and π .

Example 1 (1.58). Cube C has $M_C = \{\pi, \pi/2\}$. Let T be the standard simplex (see [DO] Fig 1.26b). $M_T = \{\pi, \pi/2, \arctan \sqrt{2} = \arccos \frac{1}{\sqrt{3}}\}.$

Definition 2. For a \mathbb{Q} -linear function $f : V(M) \to \mathbb{Q}$ with $f(\pi) = 0$, define the **Dehn** invariant $D_f(P)$ of P (with respect to f) by

$$D_f(P) := \sum_{e \in P} \ell(e) \cdot f(\phi_P(e)),$$

where the sum runs over all edges e of the polyhedron P.

[DO] calls such a function where $V(M) = \mathbb{R}$ a *d*-function. This approach requires considering \mathbb{R} as an infinite-dimensional \mathbb{Q} -vector space, which might be harder to swallow.

For any such f, as $f(\pi/2) = \frac{1}{2}f(\pi) = 0$, we have $D_f(C) = 0$.

§3. Proof of Dehn–Hadwiger theorem [AZ§8].

Theorem 3 (Dehn-Hadwiger 1.62). Let P be a polyhedron decomposed into finitely many polyhedral pieces P_1, \ldots, P_k . Let $f: V(M) \to \mathbb{Q}$ be \mathbb{Q} -linear with $f(\pi) = 0$, where $M \subset \mathbb{R}$ is finite and

$$M \supseteq M_P \cup M_{P_1} \cup \cdots \cup M_{P_k}.$$

Then

$$D_f(P) = \sum_{i=1}^k D_f(P_i).$$

Proof. Let S denote all edge segments. For a polyhedron Q and a straight line segment s, define the dihedral angle as follows. If s is part of an edge e, then it shares the dihedral angle of e. If s lies on a face or in the interior, then the dihedral angle is π or 2π , respectively. Otherwise, say it is 0.

The first key observation is that

$$\phi_P(s) = \sum_i \phi_{P_i}(s),\tag{*}$$

for any $s \in S$, regardless of its spatial relationships to P and the P_i .

The second key observation is that Dehn invariants can be calculated over (all) edge segments:

$$D_{f}(Q) = \sum_{e \in E(Q)} \ell(e) \cdot f(\phi_{Q}(e))$$

$$= \sum_{e \in E(Q)} f(\phi_{Q}(e)) \cdot \sum_{\substack{s \in S \\ s \subseteq e}} \ell(s)$$

$$= \sum_{e \in E(Q)} \sum_{\substack{s \in S \\ s \subseteq e}} \ell(s) f(\phi_{Q}(s))$$

$$= \sum_{s \in S} \ell(s) f(\phi_{Q}(s)). \qquad (\dagger)$$

The rest is a simple calculation:

$$\sum_{i} D_{f}(P_{i}) = \sum_{i} \sum_{e \in E(P_{i})} \ell(e) \cdot f(\phi_{P_{i}}(e))$$

$$= \sum_{i} \sum_{s \in S} \ell(s) \cdot f(\phi_{P_{i}}(s))$$

$$= \sum_{s \in S} \sum_{i} \ell(s) \cdot f(\phi_{P_{i}}(s))$$

$$= \sum_{s \in S} \ell(s) \cdot \sum_{i} f(\phi_{P_{i}}(s))$$

$$= \sum_{s \in S} \ell(s) \cdot f\left(\sum_{i} \phi_{P_{i}}(s)\right)$$
by Q-linearity
$$= \sum_{s \in S} \ell(s) \cdot f(\phi_{P}(s))$$
by (*)
$$= D_{f}(P),$$
by (†)

as desired.

Corollary 4 (1.62). Let P and Q be two polyhedra, and $M \subset \mathbb{R}$ finite such that $M \supseteq M_P \cup M_Q$. If there exists a \mathbb{Q} -linear function $f : V(M) \to \mathbb{Q}$ with $f(\pi) = 0$ such that $D_f(P) \neq D_f(Q)$, then P and Q are not scissors congruent.

Proof. Suppose P and Q are scissors congruent, and let (M and) f be given.

Fix some common decomposition: P is decomposed into P_1, \ldots, P_k and Q is decomposed into Q_1, \ldots, Q_k , where P_i and Q_i are congruent. Let $M' \supseteq M$ be a finite set that includes all dihedral angles that appear.

Extend f to $f': V(M') \to \mathbb{Q}$ by specifying the values of f' on new basis elements (and keep the old ones the same). Then

$$D_f(P) = D_{f'}(P) = \sum_{i=1}^k D_{f'}(P_i) = \sum_{i=1}^k D_{f'}(Q_i) = D_{f'}(Q) = D_f(Q),$$

as desired.

Example 5 (1.64). Recall that cube C has $M_C = \{\pi, \pi/2\}$. Let T be the standard simplex (see [DO] Fig 1.26b). $M_T = \{\pi, \pi/2, \theta = \arctan \sqrt{2} = \arccos \frac{1}{\sqrt{3}}\}.$

Since $\frac{1}{\pi} \arccos \frac{1}{\sqrt{n}}$ is irrational for n = 3 (see below), $\dim_{\mathbb{Q}} V(M_T) = 2 > 1 = \dim_{\mathbb{Q}} V(M_C)$. Therefore there exists a \mathbb{Q} -linear function $f: V(M_T) \to \mathbb{Q}$ such that $f(\pi) = 0$ and $f(\theta) = 23$. For this f, the corresponding Dehn invariant $D_f(T) = 3sf(\pi/2) + 3 \cdot s\sqrt{2} \cdot f(\theta)$ is nonzero, but any Dehn invariant of the cube is 0, and hence by Dehn–Hadwiger theorem, T is not scissors congruent to a cube.

Exercise 6 (1.65). Regular tetrahedron is not scissors congruent to a cube. (This is in $[AZ\S8]$, please do *not* look up the solution.)

Theorem 7 (Sydler 1.67). If P and Q are not scissors congruent, then there is some f such that the Dehn invariant $D_f(P) \neq D_f(Q)$.

Yang 4

§4. Irrationality [AZ§6].

Theorem 8. For odd integer $n \geq 3$,

$$\frac{1}{\pi} \arccos \frac{1}{\sqrt{n}}$$

is irrational.

Proof. Recall addition formula

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta.$$

Summing yields

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta.$$
Let $\varphi_n = \arccos\frac{1}{\sqrt{n}}$, so $\cos\varphi_n = \frac{1}{\sqrt{n}}$. Substituting $\alpha = k\varphi_n$ and $\beta = \varphi_n$ yields
$$\cos(k+1)\varphi_n + \cos(k-1)\varphi_n = 2\cos\varphi_n\cos k\varphi_n$$

Claim 8.1. For all integers $k \ge 0$,

$$\cos k\varphi_n = \frac{A_k}{\sqrt{n^k}}$$

for some integer $A_k \in \mathbb{Z}$ such that $n \nmid A_k$.

Proof. Indeed, $A_0 = A_1 = 1$. By induction, we have

$$\cos(k+1)\varphi_n = 2\cos\varphi_n\cos k\varphi_n - \cos(k-1)\varphi_n$$
$$= 2\frac{1}{\sqrt{n}}\frac{A_k}{\sqrt{n^k}} - \frac{A_{k-1}}{\sqrt{n^{k-1}}} = \frac{2A_k - nA_{k-1}}{\sqrt{n^{k+1}}},$$

 \mathbf{SO}

$$A_{k+1} = 2A_k - nA_{k-1}$$

is an integer. Moreover, if $n \mid A_{k+1}$ then $n \mid 2A_k$. But $n \geq 3$ is odd and $n \nmid A_k$, a contradiction.

Suppose, towards a contradiction, that

$$\frac{1}{\pi}\arccos\frac{1}{\sqrt{n}} = \frac{p}{q}$$

with integers p, q > 0, then taking cosine of both sides of

$$q\varphi_n = p\pi$$

yields

$$\pm 1 = \cos p\pi = \cos q\varphi_n = \frac{A_q}{\sqrt{n^q}},$$

and hence $\sqrt{n^q} = \pm A_q$ is an integer. In fact, q > 1 as $0 < \arccos \frac{1}{\sqrt{n}} < \pi/2$. So $q \ge 2$ and $n \mid \sqrt{n^q} \mid A_q$, a contradiction.