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Math 4990 Scissors congruence and Dehn invariants

JED YANG

§1. Q-vector spaces. For M = {m1, . . . ,mk} ⊆ R, let

V (M) :=
{ k∑

i=1

qimi : qi ∈ Q
}
⊆ R

denote the set of all linear combinations of numbers in M with rational coefficients.
Note that V (M) is a finite-dimensional vector space over the field Q.
The dimension is the size of any minimal generating set. As M generates,

dimQ V (M) ≤ k = |M | .
Considering Q as a 1-dimensional vector space over itself, a linear map

f : V (M)→ Q
of Q-vector spaces is a Q-linear function, which satisfies these properties:

(i) f(x) + f(y) = f(x+ y) for x, y ∈ V (M)
(ii) f(qx) = qf(x) for x ∈ V (M), q ∈ Q

§2. Dehn invariants. Let P be a 3-dimensional polyhedron. For an edge e of P , let `(e)
denote its length, and φP (e) its dihedral angle, defined as the angle between the two faces
meeting at e. (If n1 and n2 are outward unit normal vectors of the faces in question, then
n1 · n2 = − cos(φP (e)). [DO] is missing a negative sign.)

Let MP be the set of all dihedral angles of P and π.

Example 1 (1.58). Cube C has MC = {π, π/2}. Let T be the standard simplex (see [DO]
Fig 1.26b). MT = {π, π/2, arctan

√
2 = arccos 1√

3
}.

Definition 2. For a Q-linear function f : V (M) → Q with f(π) = 0, define the Dehn
invariant Df (P ) of P (with respect to f) by

Df (P ) :=
∑
e∈P

`(e) · f(φP (e)),

where the sum runs over all edges e of the polyhedron P .

[DO] calls such a function where V (M) = R a d-function. This approach requires considering
R as an infinite-dimensional Q-vector space, which might be harder to swallow.

For any such f , as f(π/2) = 1
2
f(π) = 0, we have Df (C) = 0.
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§3. Proof of Dehn–Hadwiger theorem [AZ§8].

Theorem 3 (Dehn–Hadwiger 1.62). Let P be a polyhedron decomposed into finitely many
polyhedral pieces P1, . . . , Pk. Let f : V (M)→ Q be Q-linear with f(π) = 0, where M ⊂ R is
finite and

M ⊇MP ∪MP1 ∪ · · · ∪MPk
.

Then

Df (P ) =
k∑
i=1

Df (Pi).

Proof. Let S denote all edge segments. For a polyhedron Q and a straight line segment s,
define the dihedral angle as follows. If s is part of an edge e, then it shares the dihedral angle
of e. If s lies on a face or in the interior, then the dihedral angle is π or 2π, respectively.
Otherwise, say it is 0.

The first key observation is that

φP (s) =
∑
i

φPi
(s), (*)

for any s ∈ S, regardless of its spatial relationships to P and the Pi.
The second key observation is that Dehn invariants can be calculated over (all) edge

segments:

Df (Q) =
∑

e∈E(Q)

`(e) · f(φQ(e))

=
∑

e∈E(Q)

f(φQ(e)) ·
∑
s∈S
s⊆e

`(s)

=
∑

e∈E(Q)

∑
s∈S
s⊆e

`(s)f(φQ(s))

=
∑
s∈S

`(s)f(φQ(s)). (†)
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The rest is a simple calculation:∑
i

Df (Pi) =
∑
i

∑
e∈E(Pi)

`(e) · f(φPi
(e))

=
∑
i

∑
s∈S

`(s) · f(φPi
(s)) by (†)

=
∑
s∈S

∑
i

`(s) · f(φPi
(s))

=
∑
s∈S

`(s) ·
∑
i

f(φPi
(s))

=
∑
s∈S

`(s) · f
(∑

i

φPi
(s)
)

by Q-linearity

=
∑
s∈S

`(s) · f(φP (s)) by (*)

= Df (P ), by (†)
as desired. �

Corollary 4 (1.62). Let P and Q be two polyhedra, and M ⊂ R finite such that M ⊇
MP ∪ MQ. If there exists a Q-linear function f : V (M) → Q with f(π) = 0 such that
Df (P ) 6= Df (Q), then P and Q are not scissors congruent.

Proof. Suppose P and Q are scissors congruent, and let (M and) f be given.
Fix some common decomposition: P is decomposed into P1, . . . , Pk and Q is decomposed

into Q1, . . . , Qk, where Pi and Qi are congruent. Let M ′ ⊇ M be a finite set that includes
all dihedral angles that appear.

Extend f to f ′ : V (M ′) → Q by specifying the values of f ′ on new basis elements (and
keep the old ones the same). Then

Df (P ) = Df ′(P ) =
k∑
i=1

Df ′(Pi) =
k∑
i=1

Df ′(Qi) = Df ′(Q) = Df (Q),

as desired. �

Example 5 (1.64). Recall that cube C has MC = {π, π/2}. Let T be the standard simplex
(see [DO] Fig 1.26b). MT = {π, π/2, θ = arctan

√
2 = arccos 1√

3
}.

Since 1
π

arccos 1√
n

is irrational for n = 3 (see below), dimQ V (MT ) = 2 > 1 = dimQ V (MC).

Therefore there exists a Q-linear function f : V (MT )→ Q such that f(π) = 0 and f(θ) = 23.
For this f , the corresponding Dehn invariant Df (T ) = 3sf(π/2) + 3 · s

√
2 · f(θ) is nonzero,

but any Dehn invariant of the cube is 0, and hence by Dehn–Hadwiger theorem, T is not
scissors congruent to a cube.

Exercise 6 (1.65). Regular tetrahedron is not scissors congruent to a cube. (This is in
[AZ§8], please do not look up the solution.)

Theorem 7 (Sydler 1.67). If P and Q are not scissors congruent, then there is some f such
that the Dehn invariant Df (P ) 6= Df (Q).
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§4. Irrationality [AZ§6].

Theorem 8. For odd integer n ≥ 3,

1

π
arccos

1√
n

is irrational.

Proof. Recall addition formula

cos(α± β) = cosα cos β ∓ sinα sin β.

Summing yields
cos(α + β) + cos(α− β) = 2 cosα cos β.

Let ϕn = arccos 1√
n
, so cosϕn = 1√

n
. Substituting α = kϕn and β = ϕn yields

cos(k + 1)ϕn + cos(k − 1)ϕn = 2 cosϕn cos kϕn

Claim 8.1. For all integers k ≥ 0,

cos kϕn =
Ak
√
n
k

for some integer Ak ∈ Z such that n - Ak.

Proof. Indeed, A0 = A1 = 1. By induction, we have

cos(k + 1)ϕn = 2 cosϕn cos kϕn − cos(k − 1)ϕn

= 2
1√
n

Ak
√
n
k
− Ak−1
√
n
k−1 =

2Ak − nAk−1
√
n
k+1

,

so
Ak+1 = 2Ak − nAk−1

is an integer. Moreover, if n | Ak+1 then n | 2Ak. But n ≥ 3 is odd and n - Ak, a
contradiction. �

Suppose, towards a contradiction, that

1

π
arccos

1√
n

=
p

q

with integers p, q > 0, then taking cosine of both sides of

qϕn = pπ

yields

±1 = cos pπ = cos qϕn =
Aq√
n
q ,

and hence
√
n
q

= ±Aq is an integer. In fact, q > 1 as 0 < arccos 1√
n
< π/2. So q ≥ 2 and

n |
√
n
q | Aq, a contradiction. �
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