## Math 4990 Problem Set 11

Due Tuesday, Nov 18, 2014 in class

Updated: Problem 2 functions $f, g:[0,1] \rightarrow[0, \infty)$ instead of $f, g:[0,1] \rightarrow[0,1]$.

## Assignment

The Fair Division lecture is based on Chapter 4 of $[\mathrm{P}]$ and $[\mathrm{Su}]$ (see link on website), which you are welcome to peruse.

Problem 1. Suppose $k$ pirates found a necklace made up of $t$ types of pearls, where the number of each type of pearls is a multiple of $k$. They wish to cut the necklace to divide the loot evenly, i.e., each pirate receives $\frac{1}{k}$ proportion of each type of pearls.
(1) Prove that $t(k-1)$ cuts may be needed.
(2) Prove that $t(k-1)$ cuts always suffice.
[ Hint: We did the case of $t=2$ and arbitrary $k$. If you have difficulty with this problem, you may assume $t=3$ for partial credit. You may, moreover, assume $k=2$ for even less partial credit. ]

Problem 2. Let $f, g:[0,1] \rightarrow[0, \infty)$ be two continuous functions such that

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x=1
$$

Prove that for every $n \in \mathbb{N}$, there exist $a, b \in[0,1]$ such that

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x=\frac{1}{n}
$$

[ Hint: For partial credit, do the case where $n=2$.]

Problem 3. Provide the missing component in the following analogy:
Sperner's Lemma : envy-free cake division :: $\qquad$ : envy-free rent division

Namely, take a triangle with vertices $A, B, C$, add one or more vertices on each edge, add vertices in the interior, and then triangulate. Label vertex $A$ with 2 or $3, B$ with 1 or 3 , and $C$ with 1 or 2 . Label vertices on the interior of edge $A B$ with $3, A C$ with 2 , and $B C$ with 1 . Label the vertices inside with 1,2 , or 3 . A small triangle is rainbow if its vertices all have different labels.

Prove that the number of rainbow triangles is odd.

