Math 4990 Problem Set 5

Due Tuesday, Oct 7, 2014 in class

Please refer to previous problem sets for instructions, including but not limited to the collaboration policy.

Assignment

Liberally peruse pages $59-\mathbf{6 3}$ of [DO].
[DO] Exercises 3.2, 3.3, 3.4, and 3.7.

Problem 5. Prove that a polygon of perimeter p can be covered by a disc of diameter $p / 2$.

Problem 6. Recall this corollary of Helly theorem, stated in class:
Let $A \subset \mathbb{R}^{2}$ be a fixed convex set and let $X_{1}, \ldots, X_{n} \subset \mathbb{R}^{2}$ be convex sets such that every three of them intersect a translation of A. There exists a translation of A that intersects all sets X_{i}.

For each i, let $Y_{i}=\left\{y \in \mathbb{R}^{2}:(A+y) \cap X_{i} \neq \varnothing\right\}$. In order to apply Helly theorem to obtain the corollary, show that the Y_{i} are convex.

