Math 4990 Problem Set 4

Due Tuesday, Sep 30, 2014 in class

Please refer to previous problem sets for instructions, including but not limited to the collaboration policy.

Read the assignment carefully.

Assignment

Liberally peruse pages $\mathbf{3 3 - 3 6}$ of [DO].

Problem 1. Recall these definitions from class:
A set $M \subseteq \mathbb{R}^{n}$ is convex if for every pair $x, y \in M$, the line segment from x to y lies in M.
For a set $S \subseteq \mathbb{R}^{n}$, the convex hull of S, denoted $\operatorname{conv}(S)$, is the intersection of all convex sets that contain S.

Prove that the convex hull $\operatorname{conv}(S)$ of any set S is convex.
(Do not assume that S lies in the plane. Do not use Theorem 2.2, as its proof relies on this exercise.)

Problem 2. Let $S \subset \mathbb{R}^{n}$ be a finite point set with at least four points. For $n=2$, show that S can be partitioned into two sets A and B such that $\operatorname{conv}(A)$ intersects conv (B). (Do not use Helly theorem, as this fact is used in its proof.) Does the result hold for $n \geq 3$? (Provide justification.)

Problem 3. Let $S \subset \mathbb{R}^{2}$ be a finite point set in the plane. Show that conv (S) is the convex polygon with the smallest perimeter that contains S.

Problem 4. Let $S \subset \mathbb{R}^{3}$ be a finite point set in space. Show that $\operatorname{conv}(S)$ is the convex polyhedron with the smallest volume that contains S.

Problem 5. Let $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{2}$ be rectangles whose sides are parallel to the x - and y-axes. Show that if every two of them intersect then they all intersect, i.e., there is a point $z \in P_{1}, \ldots, P_{n}$.

