Math 4990 Scissors congruence and Dehn invariants

JED YANG

§1. In \mathbb{R}^{2}.

Theorem 1. If P and Q are polygons with the same area, they are sissors congruent.
Proof. Triangulate. Triangles are scissors congruent to rectangles. Rectangles (of the same area) are scissors congruent to each other.
$\S 2 . \mathbb{Q}$-vector spaces. For $M=\left\{m_{1}, \ldots, m_{k}\right\} \subseteq \mathbb{R}$, let

$$
V(M):=\left\{\sum_{i=1}^{k} q_{i} m_{i}: q_{i} \in \mathbb{Q}\right\} \subseteq \mathbb{R}
$$

denote the set of all linear combinations of numbers in M with rational coefficients.
Note that $V(M)$ is a finite-dimensional vector space over the field \mathbb{Q}.
The dimension is the size of any minimal generating set. As M generates,

$$
\operatorname{dim}_{\mathbb{Q}} V(M) \leq k=|M|
$$

Considering \mathbb{Q} as a 1-dimensional vector space over itself, a linear map

$$
f: V(M) \rightarrow \mathbb{Q}
$$

of \mathbb{Q}-vector spaces is a \mathbb{Q}-linear function, which satisfies these properties:
(i) $f(x)+f(y)=f(x+y)$ for $x, y \in V(M)$
(ii) $f(q x)=q f(x)$ for $x \in V(M), q \in \mathbb{Q}$
§3. Dehn invariants. Let P be a 3-dimensional polyhedron. For an edge e of P, let $\ell(e)$ denote its length, and $\phi(e)$ its dihedral angle, defined as the angle between the two faces meeting at e.

Let M_{P} be the set of all dihedral angles of P and π.
Cube C has $M_{C}=\{\pi / 2, \pi\}$.
For a \mathbb{Q}-linear function $f: V(M) \rightarrow \mathbb{Q}$ with $f(\pi)=0$, define the Dehn invariant $D_{f}(P)$ of P (with respect to f) by

$$
D_{f}(P):=\sum_{e \in P} \ell(e) \cdot f(\phi(e))
$$

where the sum runs over all edges e of the polyhedron P.
For any such f, as $f(\pi / 2)=\frac{1}{2} f(\pi)=0$, we have $D_{f}(C)=0$.

$\S 4$. In \mathbb{R}^{3}.

Theorem 2 (Sydler 1.67). If P and Q are not scissors congruent, then there is some f such that the Dehn invariant $D_{f}(P) \neq D_{f}(Q)$.

We will not prove Sydler theorem, but we will prove Dehn-Hadwiger theorem next time, which establishes the converse.

§5. Irrationality.

Theorem 3. For odd integer $n \geq 3$,

$$
\frac{1}{\pi} \arccos \frac{1}{\sqrt{n}}
$$

is irrational.
Proof. Recall addition formula

$$
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
$$

Summing yields

$$
\cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha \cos \beta
$$

Let $\varphi_{n}=\arccos \frac{1}{\sqrt{n}}$, so $\cos \varphi_{n}=\frac{1}{\sqrt{n}}$. Substituting $\alpha=k \varphi_{n}$ and $\beta=\varphi_{n}$ yields

$$
\cos (k+1) \varphi_{n}+\cos (k-1) \varphi_{n}=2 \cos \varphi_{n} \cos k \varphi_{n}
$$

Claim 3.1. For all integers $k \geq 0$,

$$
\cos k \varphi_{n}=\frac{A_{k}}{\sqrt{n}^{k}}
$$

for some integer $A_{k} \in \mathbb{Z}$ such that $n \nmid A_{k}$.
Proof. Indeed, $A_{0}=A_{1}=1$. By induction, we have

$$
\begin{aligned}
\cos (k+1) \varphi_{n} & =2 \cos \varphi_{n} \cos k \varphi_{n}-\cos (k-1) \varphi_{n} \\
& =2 \frac{1}{\sqrt{n}} \frac{A_{k}}{\sqrt{n}^{k}}-\frac{A_{k-1}}{\sqrt{n}^{k-1}}=\frac{2 A_{k}-n A_{k-1}}{\sqrt{n}^{k+1}},
\end{aligned}
$$

so

$$
A_{k+1}=2 A_{k}-n A_{k-1}
$$

is an integer. Moreover, if $n \mid A_{k+1}$ then $n \mid 2 A_{k}$. But $n \geq 3$ is odd and $n \nmid A_{k}$, a contradiction.

Suppose, towards a contradiction, that

$$
\frac{1}{\pi} \arccos \frac{1}{\sqrt{n}}=\frac{p}{q}
$$

with integers $p, q>0$, then taking cosine of both sides of

$$
q \varphi_{n}=p \pi
$$

yields

$$
\pm 1=\cos p \pi=\cos q \varphi_{n}=\frac{A_{q}}{\sqrt{n}^{q}}
$$

and hence $\sqrt{n}^{q}= \pm A_{q}$ is an integer. In fact, $q>1$ as $0<\arccos \frac{1}{\sqrt{n}}<\pi / 2$. So $q \geq 2$ and $n\left|\sqrt{n}^{q}\right| A_{q}$, a contradiction.
2014.09.23

§6. Proof of Dehn-Hadwiger theorem.

Theorem 4 (Dehn-Hadwiger 1.62). Let P be a polyhedron decomposed into finitely many polyhedral pieces P_{1}, \ldots, P_{k}. Let $f: V(M) \rightarrow \mathbb{Q}$ be a d-function, where $M \subset \mathbb{R}$ is finite and

$$
M \supseteq M_{P} \cup M_{P_{1}} \cup \cdots \cup M_{P_{k}} .
$$

Then

$$
D_{f}(P)=\sum_{i=1}^{k} D_{f}\left(P_{i}\right)
$$

Proof. Let S denote all edge segments. For a polyhedron Q and a straight line segment s, define the dihedral angle as follows. If s is part of an edge e, then it shares the dihedral angle of e. If s lies on a face or in the interior, then the dihedral angle is π or 2π, respectively. Otherwise, say it is 0 .

Let $\phi(s)$ and $\phi_{i}(s)$ denote the dihedral angle of s with respect to P and P_{i}, respectively, The key observation is that

$$
\begin{equation*}
\phi(s)=\sum_{i} \phi_{i}(s), \tag{*}
\end{equation*}
$$

for any $s \in S$, regardless of its spatial relationships to P and the P_{i}.
Dehn invariants can be calculated over (all) edge segments:

$$
\begin{align*}
D_{f}(Q) & =\sum_{e \in E(Q)} \ell(e) \cdot f(\phi(e)) \\
& =\sum_{e \in E(Q)} f(\phi(e)) \cdot \sum_{\substack{s \in S \\
s \subseteq e}} \ell(s) \\
& =\sum_{e \in E(Q)} \sum_{\substack{s \in S \\
s \subseteq e}} \ell(s) f(\phi(s)) \\
& =\sum_{s \in S} \ell(s) f(\phi(s)),
\end{align*}
$$

where ϕ is with respect to Q.

The rest is a simple calculation:

$$
\begin{array}{rlr}
\sum_{i} D_{f}\left(P_{i}\right) & =\sum_{i} \sum_{e \in E\left(P_{i}\right)} \ell(e) \cdot f\left(\phi_{i}(e)\right) \\
& =\sum_{i} \sum_{s \in S} \ell(s) \cdot f\left(\phi_{i}(s)\right) & \\
& =\sum_{s \in S} \sum_{i} \ell(s) \cdot f\left(\phi_{i}(s)\right) & \\
& =\sum_{s \in S} \ell(s) \cdot \sum_{i} f\left(\phi_{i}(s)\right) \\
& =\sum_{s \in S} \ell(s) \cdot f\left(\sum_{i} \phi_{i}(s)\right) & \\
& =\sum_{s \in S} \ell(s) \cdot f(\phi(s)) & \text { by } \mathbb{Q} \text {-linearity } \\
& =D_{f}(P), & \text { by } \left.\rrbracket^{*}\right) \\
\dagger \text { by }
\end{array}
$$

as desired.
Corollary 5 (1.62). Let P and Q be two polyhedra, and $M \subset \mathbb{R}$ finite such that $M \supseteq M_{P} \cup$ M_{Q}. If $f: V(M) \rightarrow \mathbb{Q}$ is any \mathbb{Q}-linear function with $f(\pi)=0$ such that $D_{f}(P) \neq D_{f}(Q)$, then P and Q are not scissors congruent.

Proof. Suppose P and Q are scissors congruent, and let (M and) f be given.
Fix some common decomposition: P is decomposed into P_{1}, \ldots, P_{k} and Q is decomposed into Q_{1}, \ldots, Q_{k}, where P_{i} and Q_{i} are congruent. Let $M^{\prime} \supseteq M$ be a finite set that includes all dihedral angles that appear.

Extend f to $f^{\prime}: V\left(M^{\prime}\right) \rightarrow \mathbb{Q}$ by specifying the values of f^{\prime} on new basis elements (and keep the old ones the same). Then

$$
D_{f}(P)=D_{f^{\prime}}(P)=\sum_{i=1}^{k} D_{f^{\prime}}\left(P_{i}\right)=\sum_{i=1}^{k} D_{f^{\prime}}\left(Q_{i}\right)=D_{f^{\prime}}(Q)=D_{f}(Q)
$$

as desired.

