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§1. In R2.

Theorem 1. If P and Q are polygons with the same area, they are sissors congruent.

Proof. Triangulate. Triangles are scissors congruent to rectangles. Rectangles (of the same
area) are scissors congruent to each other. �

§2. Q-vector spaces. For M = {m1, . . . ,mk} ⊆ R, let

V (M) :=
{ k∑

i=1

qimi : qi ∈ Q
}
⊆ R

denote the set of all linear combinations of numbers in M with rational coefficients.
Note that V (M) is a finite-dimensional vector space over the field Q.
The dimension is the size of any minimal generating set. As M generates,

dimQ V (M) ≤ k = |M | .
Considering Q as a 1-dimensional vector space over itself, a linear map

f : V (M)→ Q
of Q-vector spaces is a Q-linear function, which satisfies these properties:

(i) f(x) + f(y) = f(x+ y) for x, y ∈ V (M)
(ii) f(qx) = qf(x) for x ∈ V (M), q ∈ Q

§3. Dehn invariants. Let P be a 3-dimensional polyhedron. For an edge e of P , let `(e)
denote its length, and φ(e) its dihedral angle, defined as the angle between the two faces
meeting at e.

Let MP be the set of all dihedral angles of P and π.
Cube C has MC = {π/2, π}.
For a Q-linear function f : V (M)→ Q with f(π) = 0, define the Dehn invariant Df (P )

of P (with respect to f) by

Df (P ) :=
∑
e∈P

`(e) · f(φ(e)),

where the sum runs over all edges e of the polyhedron P .
For any such f , as f(π/2) = 1

2
f(π) = 0, we have Df (C) = 0.

§4. In R3.

Theorem 2 (Sydler 1.67). If P and Q are not scissors congruent, then there is some f such
that the Dehn invariant Df (P ) 6= Df (Q).

We will not prove Sydler theorem, but we will prove Dehn–Hadwiger theorem next time,
which establishes the converse.
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§5. Irrationality.

Theorem 3. For odd integer n ≥ 3,

1

π
arccos

1√
n

is irrational.

Proof. Recall addition formula

cos(α± β) = cosα cos β ∓ sinα sin β.

Summing yields
cos(α + β) + cos(α− β) = 2 cosα cos β.

Let ϕn = arccos 1√
n
, so cosϕn = 1√

n
. Substituting α = kϕn and β = ϕn yields

cos(k + 1)ϕn + cos(k − 1)ϕn = 2 cosϕn cos kϕn

Claim 3.1. For all integers k ≥ 0,

cos kϕn =
Ak
√
n
k

for some integer Ak ∈ Z such that n - Ak.

Proof. Indeed, A0 = A1 = 1. By induction, we have

cos(k + 1)ϕn = 2 cosϕn cos kϕn − cos(k − 1)ϕn

= 2
1√
n

Ak
√
n
k
− Ak−1
√
n
k−1 =

2Ak − nAk−1
√
n
k+1

,

so
Ak+1 = 2Ak − nAk−1

is an integer. Moreover, if n | Ak+1 then n | 2Ak. But n ≥ 3 is odd and n - Ak, a
contradiction. �

Suppose, towards a contradiction, that

1

π
arccos

1√
n

=
p

q

with integers p, q > 0, then taking cosine of both sides of

qϕn = pπ

yields

±1 = cos pπ = cos qϕn =
Aq√
n
q ,

and hence
√
n
q

= ±Aq is an integer. In fact, q > 1 as 0 < arccos 1√
n
< π/2. So q ≥ 2 and

n |
√
n
q | Aq, a contradiction. �
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§6. Proof of Dehn–Hadwiger theorem.

Theorem 4 (Dehn–Hadwiger 1.62). Let P be a polyhedron decomposed into finitely many
polyhedral pieces P1, . . . , Pk. Let f : V (M)→ Q be a d-function, where M ⊂ R is finite and

M ⊇MP ∪MP1 ∪ · · · ∪MPk
.

Then

Df (P ) =
k∑

i=1

Df (Pi).

Proof. Let S denote all edge segments. For a polyhedron Q and a straight line segment s,
define the dihedral angle as follows. If s is part of an edge e, then it shares the dihedral angle
of e. If s lies on a face or in the interior, then the dihedral angle is π or 2π, respectively.
Otherwise, say it is 0.

Let φ(s) and φi(s) denote the dihedral angle of s with respect to P and Pi, respectively,
The key observation is that

φ(s) =
∑
i

φi(s), (*)

for any s ∈ S, regardless of its spatial relationships to P and the Pi.
Dehn invariants can be calculated over (all) edge segments:

Df (Q) =
∑

e∈E(Q)

`(e) · f(φ(e))

=
∑

e∈E(Q)

f(φ(e)) ·
∑
s∈S
s⊆e

`(s)

=
∑

e∈E(Q)

∑
s∈S
s⊆e

`(s)f(φ(s))

=
∑
s∈S

`(s)f(φ(s)), (†)

where φ is with respect to Q.
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The rest is a simple calculation:∑
i

Df (Pi) =
∑
i

∑
e∈E(Pi)

`(e) · f(φi(e))

=
∑
i

∑
s∈S

`(s) · f(φi(s)) by (†)

=
∑
s∈S

∑
i

`(s) · f(φi(s))

=
∑
s∈S

`(s) ·
∑
i

f(φi(s))

=
∑
s∈S

`(s) · f
(∑

i

φi(s)
)

by Q-linearity

=
∑
s∈S

`(s) · f(φ(s)) by (*)

= Df (P ), by (†)
as desired. �

Corollary 5 (1.62). Let P and Q be two polyhedra, and M ⊂ R finite such that M ⊇MP ∪
MQ. If f : V (M) → Q is any Q-linear function with f(π) = 0 such that Df (P ) 6= Df (Q),
then P and Q are not scissors congruent.

Proof. Suppose P and Q are scissors congruent, and let (M and) f be given.
Fix some common decomposition: P is decomposed into P1, . . . , Pk and Q is decomposed

into Q1, . . . , Qk, where Pi and Qi are congruent. Let M ′ ⊇ M be a finite set that includes
all dihedral angles that appear.

Extend f to f ′ : V (M ′) → Q by specifying the values of f ′ on new basis elements (and
keep the old ones the same). Then

Df (P ) = Df ′(P ) =
k∑

i=1

Df ′(Pi) =
k∑

i=1

Df ′(Qi) = Df ′(Q) = Df (Q),

as desired. �
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