Math 4990 Catalan Numbers

JED YANG

Enumerative combinatorics is a field of mathematics that deals with counting the number of objects satisfying some combinatorial description. Catalan numbers count a wide variety of objects.

1. Monotonic paths

A monotonic path is a finite sequence of 'up' and 'right' steps of unit length.
Problem 1. Count the number of monotonic paths from $(0,0)$ to (n, m).
Problem 2. Consider monotonic paths from $(0,0)$ to (n, n) that cross above the diagonal, i.e., those that enter the region $y>x$. Count the number of such paths by establishing a bijection with monotonic paths from $(0,0)$ to ($n-1, n+1$).
Problem 3. Let \mathcal{P}_{n} be the set of monotonic paths from $(0,0)$ to (n, n) that do not cross above the diagonal, i.e., those that stay in the region $y \leq x$. Count the number $\left|\mathcal{P}_{n}\right|$ of such paths.
Problem 4. Write the answer from the previous exercise as a fraction of a binomial coefficient. This is known as the Catalan number C_{n}.

2. Triangulations

Consider a convex $(n+2)$-gon with its vertices cyclically labelled 1 to $n+2$. Let \mathcal{T}_{n+2} denote the set of its triangulations. Given a triangulation, define the following monotonic path. For each $v=3,4, \ldots, n+2$, in that order, take a 'right' step, followed by as many 'up' steps as the number of $u, 1 \leq u \leq v$, such that $u v$ is a diagonal. End with an additional 'up' step.

Problem 5. Prove that this is a map $\mathcal{T}_{n+2} \rightarrow \mathcal{P}_{n}$.
Problem 6. Establish an inverse map $\mathcal{P}_{n} \rightarrow \mathcal{T}_{n+2}$. Conclude that the number of triangulations of a convex $(n+2)$-gon is C_{n}.

3. Ballot sequences

Problem 7. Let $\nearrow=(1,1)$ and $\searrow=(1,-1)$ be vectors in \mathbb{Z}^{2}. Let

$$
S=\left\{\left(v_{1}, v_{2}, \ldots, v_{2 n}\right) \in\{\nearrow, \searrow\}^{2 n}: \sum_{i=1}^{2 n} v_{i}=(2 n, 0)\right\}
$$

be the collection of all sequences of length $2 n$ with the same number of \nearrow as \searrow. Count the number $|S|$ of such sequences.
Problem 8. Let B be the sequences $\left(v_{1}, \ldots, v_{2 n}\right) \in S$ such that each partial sum $s_{t}=\sum_{i=1}^{t} v_{i}$ has non-negative y-coordinate for $t \in[2 n]=\{1,2, \ldots, 2 n\}$. These are known as ballot sequences-a way for $2 n$ people to cast yes/no votes one at a time so that there are always at least as many "yes" as "no" votes, with a tie as the end result. Count the number $|B|$ of ballot sequences.

Problem 9. Prepend $v_{0}=\nearrow$ in front of every sequence in both S and B, and call the resulting sequences augmented and denote the sets \bar{S} and \bar{B}, respectively. For each augmented sequence $\left(v_{0}, v_{1}, \ldots, v_{2 n}\right) \in \bar{S}$, show that there is a unique $r \in[0,2 n]=\{0,1, \ldots, 2 n\}$ such that $\left(v_{0+r}, v_{1+r}, \ldots, v_{2 n+r}\right)$ is an augmented ballot sequence in \bar{B}, where the indices are read modulo $2 n+1$. Call the map $f: \bar{S} \rightarrow \bar{B}$ that sends the augmented sequence to its corresponding augmented ballot sequence.

Problem 10. Show that f is surjective and that the fibers under f are all of the same size, and calculate this size. That is, calculate $\left|f^{-1}(b)\right|$ for $b \in B$.

Problem 11. Establish a linear relationship between $|B|$ and $|S|$.
Problem 12. Conclude a second proof of the expression of the Catalan number in Problem 4 without using subtraction, but using division instead.

