Math 1271-040 Midterm Exam 1 Solutions

Problem 1. Let $f(x)=x^{3}+3 x^{2}+5$.
(a) Calculate $f^{\prime \prime}(x)$.

Solution. $f^{\prime}(x)=3 x^{2}+6 x ; f^{\prime \prime}(x)=6 x+6$.
(b) Suppose c is a number such that $f^{\prime \prime}(c)=0$. Determine the value of c.

Solution. $f^{\prime \prime}(c)=6 c+6=0$ implies $c=-1$.
(c) Find an equation of the tangent line to the graph of $f(x)$ at $x=c$, where c is the value determined in part (b).
Solution. $f(c)=f(-1)=-1+3+5=7$ and $f^{\prime}(c)=f^{\prime}(-1)=3-6=-3$ yields an equation

$$
y-7=-3(x+1)
$$

for the tangent line.
Problem 2. Evaluate the limits. Simplify answers but leave them exact (e.g., do not use decimal approximations). Answers could be $\infty,-\infty$, or "does not exist."
(a) $\lim _{\theta \rightarrow \pi} \theta^{2}+\cos \theta$

Solution. As $\theta^{2}+\cos \theta$ is continuous, the Direct Substitution Property yields

$$
\pi^{2}+\cos (\pi)=\pi^{2}-1
$$

(b) $\lim _{x \rightarrow 2} \frac{e^{5 x}-e^{10}}{x-2}$

Solution. We recognize the limit as $f^{\prime}(2)$ for $f(x)=e^{5 x}$. As $f^{\prime}(x)=5 e^{5 x}$, we get

$$
f^{\prime}(2)=5 e^{10}
$$

(c) $\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}-3 x}$

Solution. Multiplying by the conjugate yields

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}-3 x\right)}{x-\sqrt{x^{2}-3 x}}=\lim _{x \rightarrow-\infty} \frac{3 x}{x-\sqrt{x^{2}-3 x}}
$$

Dividing both the numerator and the denominator by x while remembering that $x=$ $-\sqrt{x^{2}}$ for $x<0$ yields

$$
\lim _{x \rightarrow-\infty} \frac{\frac{3 x}{x}}{\frac{x}{x}-\frac{1}{-\sqrt{x^{2}}} \sqrt{x^{2}-3 x}}=\lim _{x \rightarrow-\infty} \frac{3}{1+\sqrt{1-\frac{3}{x}}}=\frac{3}{1+\sqrt{1-0}}=\frac{3}{2} .
$$

Problem 3. Differentiate. It is not necessary to simplify answers.
(a) $f(x)=(5 x-7)^{2}\left(2 x^{23}-x\right)^{3}$

Solution. $f^{\prime}(x)=2(5 x-7)(5)\left(2 x^{23}-x\right)^{3}+(5 x-7)^{2}(3)\left(2 x^{23}-x\right)^{2}\left(46 x^{22}-1\right)$
(b) $f(x)=e^{\sqrt{x-e^{3 x}}}$

Solution. $f^{\prime}(x)=e^{\sqrt{x-e^{3 x}}} \cdot \frac{1}{2}\left(x-e^{3 x}\right)^{-1 / 2} \cdot\left(1-3 e^{3 x}\right)$
(c) $f(x)=\frac{3 x^{8}+2 x-7}{\sqrt[3]{x}}$

Solution. Differentiate $f(x)=3 x^{23 / 3}+2 x^{2 / 3}-7 x^{-1 / 3}$ to get

$$
f^{\prime}(x)=23 x^{20 / 3}+\frac{4}{3} x^{-1 / 3}+\frac{7}{3} x^{-4 / 3} .
$$

Problem 4.

(a) Write down the definition of the derivative of a function f at a point a.

Solution. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
(b) Find the derivative of $f(x)=\frac{1}{\sqrt{5 x}}$ using the definition of the derivative. Do not use differentiation rules.

Solution. By definition, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{\sqrt{5(x+h)}}-\frac{1}{\sqrt{5 x}}\right)=\lim _{h \rightarrow 0} \frac{\sqrt{5 x}-\sqrt{5(x+h)}}{h \sqrt{5(x+h)} \sqrt{5 x}} .
$$

Multiply by the conjugate to get

$$
\lim _{h \rightarrow 0} \frac{5 x-5(x+h)}{h \sqrt{5(x+h)} \sqrt{5 x}(\sqrt{5 x}+\sqrt{5(x+h)})}=\lim _{h \rightarrow 0} \frac{-5 h}{h \sqrt{5(x+h)} \sqrt{5 x}(\sqrt{5 x}+\sqrt{5(x+h)})}
$$

Cancelling the h and direct substitution yields

$$
\lim _{h \rightarrow 0} \frac{-5}{\sqrt{5(x+h)} \sqrt{5 x}(\sqrt{5 x}+\sqrt{5(x+h)})}=\frac{-5}{\sqrt{5 x} \sqrt{5 x}(\sqrt{5 x}+\sqrt{5 x})}=\frac{-1}{2 \sqrt{5} x^{3 / 2}}
$$

as desired.

Problem 5. Prove the following statements. Justify answers and cite theorems used.
(a) $\lim _{t \rightarrow 0} t^{3}\left(t+\cos \frac{1}{t^{2}}\right)=0$

Solution. As

$$
-1 \leq \cos \frac{1}{t^{2}} \leq 1
$$

we have

$$
-\left|t^{3}\right| \leq t^{3} \cos \frac{1}{t^{2}} \leq\left|t^{3}\right|
$$

Since $\lim _{t \rightarrow 0}-\left|t^{3}\right|=\lim _{t \rightarrow 0}\left|t^{3}\right|=0$, the Squeeze Theorem says

$$
\lim _{t \rightarrow 0} t^{3} \cos \frac{1}{t^{2}}=0
$$

Therefore

$$
\lim _{t \rightarrow 0} t^{3}\left(t+\cos \frac{1}{t^{2}}\right)=\lim _{t \rightarrow 0} t^{4}+\lim _{t \rightarrow 0} t^{3} \cos \frac{1}{t^{2}}=0+0=0
$$

as desired.
Grading. 1 pt for correctly identifying the bounds of $\cos \frac{1}{t^{2}} ; 1 \mathrm{pt}$ for getting the correct form before applying the Squeeze Theorem; 1pt for writing down the use of Squeeze Theorem.
(b) The function $f(x)=\sin x+\frac{\pi}{x}$ has a root in the interval $(-10 \pi, 10 \pi)$.

Solution. As $\sin x$ is continuous everywhere and $\frac{\pi}{x}$ is continuous on its domain, $f(x)$ is continuous everywhere except at $x=0$. In particular, it is continuous on the subinterval $(\pi / 2,3 \pi / 2)$. Note that $f(\pi / 2)=1+2=3$ and $f(3 \pi / 2)=-1+\frac{2}{3}=-\frac{1}{3}$. By the Intermediate Value Theorem, as f is continuous on $(\pi / 2,3 \pi / 2)$ and $f(\pi / 2)>$ $0>f(3 \pi / 2)$, there is a root in the interval, as desired.

Grading. 1pt for showing the function is continuous except at $x=0$; 1 pt for picking an interval where the outputs change signs; 1pt for citing the Intermediate Value Theorem.

Problem	Mean	Stdev
Problem 1 (6 points)	4.17	1.70
Problem 2 (6 points)	2.07	0.80
Problem 3 (6 points)	4.31	1.41
Problem 4 (6 points)	3.26	1.49
Problem 5 (6 points)	2.43	1.69
$\sum(30$ points total)	16.24	5.04

