Math 1271-040 Midterm Exam 2

Name:	
ID:	
TA:	
Section:	

1. Do not open the exam until instructed.

- 2. There are 5 problems, each on a single page. Make sure no pages are missing.
- 3. You have 50 minutes.
- 4. Each problem is worth 6 points, equally distributed among its parts. As the problems are of varying difficulty level, if you are stuck, you may wish to skip ahead and do other parts first.
- 5. Organize your work clearly and show an appropriate amount of detail. Illegible scribbles or unsubstantiated correct answers will receive little or no credit.
- 6. You may (but do not need to) use a scientific calculator.
- 7. No books, notes, graphing calculators, mobile phones, computers, Rubik's cubes, or other devices allowed.

Problem 1 (6 points)
Problem 2 (6 points)
Problem 3 (6 points)
Problem 4 (6 points)
Problem 5 (6 points)
\sum (30 points total)

Problem 1. Calculate y'.

Answers can be in terms of both x and y; it is not necessary to simplify answers. (a) $2x^3 + x^2y - xy^3 = 2$.

(b)
$$y = \frac{e^{-x}\cos^2 x}{(x^2 + x + 1)^5\sqrt{x - 1}}$$

Problem 2. The volume of a cube is increasing at a rate of 10 cubic meters per minute. How fast is the surface area increasing when the length of an edge is 5 meters.

(a) $\lim_{x \to \infty} x^{3/x}$

(b)
$$\lim_{x \to 0^+} \frac{\ln(1-x) - \sin x}{1 - \cos^2(x)}$$

(c)
$$\lim_{x \to 0} \frac{x \sin(x) \sin(2x) \sin(3x)}{x^3 \sin(5x)}$$

Problem 4. A right circular cylinder is inscribed in a right circular cone with height h and base radius r. Find the largest possible volume of such a cylinder.

Problem 5. Estimate $\sqrt[4]{10008}$ in the following ways.

- It is not necessary to simplify expressons (e.g., sums, fractions) involving only numbers.
 - (a) Use a linear approximation (or differentials) to estimate.

(b) Use Newton's Method to estimate: pick a sensible x_1 and calculate x_2 .