Math 1271 Calculus I
Spring 2015
Exam 3A
4/30/15
Time Limit: 50 Minutes

Name (Print):

Workshop Leader:

Section \#:

This exam contains 7 pages (including this cover page) and 6 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or a graphing calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work in a reasonable, tidy, and coherent way. Work that is disorganized and jumbled that lacks clear reasoning will receive little or no credit.
- Unsupported answers will not receive full credit. An answer must be supported by calculations, explanation, and/or algebraic work to receive full credit. Partial credit may be given to well-argued incorrect answers as well.
- If you need more space, use the back of the pages. Clearly indicate when you have done this.
- Give answers in exact form ($\sqrt{2}$ not $1.414, \pi$ not 3.14159)

Problem		Points
1	25	Score
2	15	
3	12	
4	15	
5	13	
6	20	
Total:	100	

Do not write in the table to the right.

1. (25 points) Evaluate the integral.
(a) (10 points) $\int \frac{2 \sin x}{1+\cos ^{2} x} d x$

ANSWER
(b) (15 points) $\int_{5}^{8} \frac{x}{\sqrt{x-4}} d x$
2. (15 points) Find the derivative of the function $g(x)=\int_{x}^{\sin x}\left(t^{2}+1\right)^{5} d t$.
3. (12 points) Find an approximation to the integral $\int_{-1}^{3} x^{3}+x d x$ using a Riemann sum with right endpoints and $n=4$.
4. (15 points) Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-3}^{0}\left(\sqrt{9-x^{2}}+1\right) d x .
$$

5. (13 points) Consider an object moving along a line with the velocity $v(t)=3 \sin \pi t$. Find the distance traveled over the time interval $0 \leq t \leq 2$.
6. (20 points) Find the area of the region enclosed by the parabola $y=2-x^{2}$ and the line $y=-x$.
