Math 1271 Calculus I
Spring 2015
Exam 2A
4/2/15
Time Limit: 50 Minutes

Name (Print):
Workshop Leader:
Section \#:

This exam contains 7 pages (including this cover page) and 6 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or a graphing calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work in a reasonable, tidy, and coherent way. Work that is disorganized and jumbled that lacks clear reasoning will receive little or no credit.
- Unsupported answers will not receive full credit. An answer must be supported by calculations, explanation, and/or algebraic work to receive full credit. Partial credit may be given to well-argued incorrect answers as well.
- If you need more space, use the back of the pages. Clearly indicate when you have done this.
- Give answers in exact form ($\sqrt{2}$ not $1.414, \pi$ not 3.14159)

Problem		Points
1	24	Score
2	17	
3	15	
4	12	
5	12	
6	20	
Total:	100	

Do not write in the table to the right.

1. (24 points) Find the limit.
(a) (8 points) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$

ANSWER

(b) (8 points) $\lim _{x \rightarrow 0} \frac{\tan x-1}{x+1}$

ANSWER

(c) (8 points) $\lim _{x \rightarrow \infty} x^{1 / x}$
2. (17 points) Let $f^{\prime}(x)=2+\cos x$.
(a) (8 points) If $f(\pi)=\pi$, find $f(x)$.
(b) (9 points) Find the number(s) that satisfies the conclusion of the Mean Value Theorem for the function f in (a) on the interval $[0, \pi]$.
(Hint : The Mean Value Theorem claims that if f is continuous on the closed interval $[a, b]$ and differentiable on (a, b), then there is at least one point c in (a, b) such that the instantaneous rate of change at c is equal to the average rate of change over $[a, b]$.)
3. (15 points) Let $g(x)=(x-3) \sqrt{x}$.
(a) (8 points) Find intervals of increase or decrease.
(b) (7 points) Find the inflection points of the function.
4. (12 points) Using either a linear appoximation or differentials, estimate $\ln 1.01$.
5. (12 points) If $L^{2}=x^{2}+y^{2},(L \geq 0), \frac{d x}{d t}=-1$, and $\frac{d y}{d t}=3$, find $\frac{d L}{d t}$ when $x=5, y=12$.
6. (20 points) Suppose $300 \mathrm{in}^{2}$ of material is available to make a box with a square base and an open top. Find the dimensions of the box with the greatest volume.

