Math 1271 Calculus I
Spring 2015
Exam 1A
2/19/15
Time Limit: 50 Minutes

Name (Print):

Workshop Leader:

Section \#:

This exam contains 8 pages (including this cover page) and 8 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or a graphing calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work in a reasonable, tidy, and coherent way. Work that is disorganized and jumbled that lacks clear reasoning will receive little or no credit.
- Unsupported answers will not receive full credit. An answer must be supported by calculations, explanation, and/or algebraic work to receive full credit. Partial credit may be given to well-argued incorrect answers as well.
- If you need more space, use the back of the pages. Clearly indicate when you have done this.
- Give answers in exact form ($\sqrt{2}$ not $1.414, \pi$ not 3.14159)

Do not write in the table to the right.

Problem	Points	Score
$1-2$	14	
3	10	
4	10	
5	15	
6	24	
7	15	
8	12	
Total:	100	

1. (7 points) Find the derivative of $y=\sqrt{x} e^{-3 x^{2}+2}$.
(a) $\frac{(1+12 x)}{2 \sqrt{x}} e^{-3 x^{2}+2}$
(b) $\frac{\left(1+12 x^{2}\right)}{2 \sqrt{x}} e^{-3 x^{2}+2}$
(c) $\frac{(1-12 x)}{2 \sqrt{x}} e^{-3 x^{2}+2}$
(d) $\frac{\left(1-12 x^{2}\right)}{2 \sqrt{x}} e^{-3 x^{2}+2}$
(e) None of the Above.
\#1 ANSWER
2. (7 points) Find the derivative of $\frac{\theta}{1-\tan \theta}$.
(a) $\frac{1}{\sec ^{2} \theta}$
(b) $\frac{1+\tan \theta+\theta \sec ^{2} \theta}{(1-\tan \theta)^{2}}$
(c) $\frac{1-\tan \theta+\theta \sec ^{2} \theta}{(1-\tan \theta)^{2}}$
(d) $\frac{1-\tan \theta-\theta \sec ^{2} \theta}{(1-\tan \theta)^{2}}$
(e) None of the Above.
3. (10 points) Compute the limit

$$
\lim _{y \rightarrow 0} \frac{\cos ^{4}(x+y)-\cos ^{4} x}{y} .
$$

4. (10 points) Suppose that the function $f(x)$ has $f^{\prime}(x)=\sin ^{2}(x+3)$.

Let $g(x)=f\left(x^{3}\right)$. What is $g^{\prime}(x)$?
5. (15 points) Find an equation of the tangent line that is tangent to the curve $y=3 x^{2}-4 x$ and parallel to the line $8 x-y+5=0$.
6. (24 points) Find the limit.
(a) (8 points) $\lim _{x \rightarrow-\infty} \frac{3 x+2}{x^{2}-1}$
(b) (8 points) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{|x-3|}$
(c) (8 points) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
7. (15 points) Let

$$
f(x)= \begin{cases}2 x, & \text { if } x<1 \\ x^{2}+a x, & \text { if } x \geq 1\end{cases}
$$

(a) (7 points) Show that f is not continuous at $x=1$ when $a=3$.
(b) (8 points) For what valule of a is $f(x)$ is continuous at every x ?
8. (12 points) Show that $x^{3}-x-1=0$ has a root in the interval $(-1,2)$.

