\qquad

100 Points Total.

Problems 1-4: Multiple choice. Select the ONE correct answer. No work needs to be shown on this section. 5 pts each.

1. Let $F(x)=[g(x)]^{2}+x \cdot g(x)-6$. Suppose $g(2)=5$ and $g^{\prime}(2)=-1$. Find $F^{\prime}(2)$.
A. $F^{\prime}(2)=15$
B. $F^{\prime}(2)=-7$
C. $F^{\prime}(2)=13$
D. $F^{\prime}(2)=9$
2. Let $f(x)=e^{1-\cos (\ln (3 x))}$. What is $f^{\prime}(x)$?
A. $f^{\prime}(x)=e^{1-\cos (\ln (3 x))}$
B. $f^{\prime}(x)=\frac{1}{x} \sin (\ln (3 x)) e^{1-\cos (\ln (3 x))}$
C. $f^{\prime}(x)=\frac{1}{3 x} \sin (\ln (3 x)) e^{1-\cos (\ln (3 x))}$
D. $f^{\prime}(x)=\frac{1}{3 x} \sin (x) e^{x}$
3. Find $\lim _{x \rightarrow 0} \frac{e^{3 x}-1-3 x}{2 x^{2}}$
A. 0
B. ∞
C. $-\frac{3}{2}$
D. $\frac{9}{4}$
4. What is the absolute maximum of the function $f(x)=3 x^{2 / 3}-4 x$ on the interval $[0,1]$?
A. 0
B. 0.125
C. 0.25
D. 1
5. The following is the graph of the $f^{\prime}(x)$, the derivative of $f(x)$. Use the graph below to answer the following questions about $\boldsymbol{f}(\boldsymbol{x})$ (the original function).

a. (4 pts) Over which intervals is $f(x)$ increasing and where is it decreasing?
b. (3 pts) For which value(s) of x does $f(x)$ have a local maximum or minimum?
c. (3 pts) Is the graph of $f(x)$ concave upward or concave downward at $x=-1$? Explain.

For the remaining problems, show all steps. Unsupported answers will receive little to no credit.
6. (4 pts) Let $f(x)=\arctan \left((2 x-3)^{3 / 2}\right)$. Find $f^{\prime}(x)$.
7. Suppose $1+\sin (x y)=x^{2}-y$
a. (6 pts) Find y^{\prime} using implicit differentiation.
b. (4 pts) Use your result from part a to find the equation of the line tangent to the curve at the point $(1,0)$.
8. (10 pts) A balloon is rising straight up at a constant speed of $5 \mathrm{ft} / \mathrm{sec}$. A boy rides a bicycle along a straight road at a speed of $15 \mathrm{ft} / \mathrm{sec}$. When he passes under the balloon, it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 seconds later?
9. Let $f(x)=x^{1 / x}$.
a. (6 pts) Find $f^{\prime}(x)$. Your final answer should be a function of x alone.
b. (5 pts) Find $\lim _{x \rightarrow \infty} f(x)$.
10. (10 pts) A box whose length is 3 times the width must have a volume of $12 \mathrm{~cm}^{3}$. The cost of material for the sides is $\$ 6 / \mathrm{cm}^{2}$ and the top and bottom costs $\$ 2 / \mathrm{cm}^{2}$. Find the dimensions that will minimize the cost of the box.
11. (6 pts) Suppose $f(x)$ is a continuous function on the interval $[1,5]$. Suppose also that $f(1)=2$, and that $-1 \leq f^{\prime}(x) \leq 3$ for all values of x in the interval. Using the Mean Value Theorem, find the maximum and minimum possible values of $f(5)$.
12. (5 pts) Let $f(x)=\sqrt{x+1}+\sin \left(\frac{\pi}{2} x\right)$. Use a linear approximation at $x=3$ to estimate f (3.2).
13. Let $f(x)=\frac{x^{4}-4 x^{3}}{3}$
a. (2 pts) Find the x-intercept(s) of $f(x)$.
b. (4 pts) Find the intervals of increase/decrease. Locate any local max/min.
(Continued from previous page) Let $f(x)=\frac{x^{4}-4 x^{3}}{3}$
c. (4 pts) Find the intervals of concavity and locate any inflection points.
d. (4 pts) Sketch the graph of $f(x)$. Label the intercepts, any local max/min values and inflection points.

