\qquad

100 Points Total.

Problems 1-4: Multiple choice. Select the ONE correct answer. No work needs to be shown on this section. 5 pts each.

1. Which of the following statements is true?
A. If a function is continuous at a, then it is differentiable at a.
B. If a function is differentiable at a, then it is continuous at a.
C. If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$, then $f(x)$ is continuous at a.
D. None of the above statements are true.
2. Find the vertical asymptote(s) of the rational function, $f(x)=\frac{x^{2}+5 x-24}{2 x^{2}-18}$.
A. $y=\frac{1}{2}$
B. $x=-3$
C. $x=3$
D. $x=-3$ and $x=3$
3. $f(x)=\frac{\cos x}{1-\sin x}$. What is $f^{\prime}(x)$?
A. $f^{\prime}(x)=\frac{1}{1-\sin x}$
B. $f^{\prime}(x)=\frac{1}{(1-\sin x)^{2}}$
C. $f^{\prime}(x)=-\frac{1}{1-\sin x}$
D. $f^{\prime}(x)=\frac{\sin ^{2} x-\cos ^{2} x}{(1-\sin x)^{2}}$
4. Find the horizontal asymptote(s) of the function $f(x)=\frac{\sqrt{x^{2}+1}}{x-2}$.
A. $x=2$
B. $y=-1$
C. $y=1$
D. $y=-1$ and $y=1$
5. Match the following graphs (i-iv) to the graphs of their derivatives (A-D). 8 pts total.
i.

ii.

iii.

iv.

A.

B.

C.

D.

Graph i : \qquad Graph ii : \qquad Graph iii : \qquad Graph iv: \qquad

For the remaining problems, show all steps. Unsupported answers will receive little to no credit.
6. (7 pts) Let $f(x)=\sqrt{3 x+5}$. Using the definition of a derivative (difference quotient), find $f^{\prime}(x)$.
7. (6 pts) Show that $f(x)=x^{2}+\sin x-3$ has at least one real root. You must justify your answer, but it is not necessary to actually calculate any roots.
8. Suppose a ball is thrown upward from a 150 ft ledge with an initial velocity of $128 \mathrm{ft} / \mathrm{sec}$. The height of the ball (in ft) after t seconds is given by the function $h(t)=-16 t^{2}+128 t+150$.
a. (3 pts) What is the velocity of the ball after 2 seconds?
b. (3 pts) At what time is the velocity of the ball 0 ?
c. (3 pts) What is the height of the ball when the velocity is 0 ?
d. (3 pts) What is the acceleration of the ball after 2 seconds? After 3 seconds? After 5 seconds?
9. (6 pts) Use the Squeeze Theorem to evaluate the following limit. Recall that $\cos x$ is always between -1 and 1 .

$$
\lim _{x \rightarrow \infty} \frac{\cos x}{\sqrt{x}}
$$

10. Evaluate the following limits. " ∞ ", " $-\infty$ ", and DNE are all distinct answers.
a. $(4 \mathrm{pts}) \lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}+3 x-28}$
b. (4 pts) $\lim _{x \rightarrow-3^{+}} \frac{4 x-1}{x+3}$
c. $(4 \mathrm{pts}) \lim _{x \rightarrow \infty} \frac{x}{\sqrt{4 x^{2}+x}+2 x}$
11. Suppose f and g are functions such that $f(1)=-5, g(1)=3, f^{\prime}(1)=2$, and $g^{\prime}(1)=-4$.
a. (4 pts) Find $h^{\prime}(1)$ if $h(x)=f(x) \cdot g(x)$.
b. (4 pts) Find $F^{\prime}(1)$ if $F(x)=\frac{f(x)}{g(x)}$
12. Differentiate each of the following functions.
a. (3 pts) $f(x)=x^{15}-7 x^{3}+e^{2}+\tan x$
b. (3 pts) $g(x)=e^{x}(5 x-8)$
c. (3 pts) $h(x)=\frac{x^{3}-8 x+\sqrt{x}}{x^{2}}$
13. (6 pts) Find the point on the curve $f(x)=3 x^{2}-5 x+8$ where the tangent line is parallel to the line $y=7 x-9$.
14. (6 pts) Let

$$
f(x)= \begin{cases}e^{x}(x+6 \cos x) & x<0 \\ a(x-2) & x \geq 0\end{cases}
$$

Find all values of a such that $f(x)$ is continuous everywhere.

