VOLUME OF A PRISM

JED YANG

Theorem 1. The volume of a prism with base area b and height h is given by $\frac{1}{3} b h$.
Proof. Let us orient the prism with its vertex at the origin, and the height h running in the $+x$ direction. The volume of the solid is the integral of the cross sectional area, viz.,

$$
V=\int_{0}^{h} A(x) d x
$$

where $A(x)$ is the area of the cross section at x.
Notice that $A(0)=0$ and $A(h)=b$. To figure out the entire area function, recall that the area is proportional to x^{2}. (Try convincing yourself of this. For instance, if you take a rectangle and dilate it by a factor of k, then each side becomes k times as much, hence the area is k^{2} as much. This is true also for a circle, or any other two-dimensional shape. Similarly, if you try this on a three dimensional shape, dilating in all dimensions by k will yield a k^{3}-fold increase in volume.) Thus we may conclude that

$$
A(x)=b\left(\frac{x}{h}\right)^{2}
$$

Putting all this together, we get

$$
V=\int_{0}^{h} \frac{b x^{2}}{h^{2}} d x=\frac{1}{3} b h
$$

as desired.
In particular, the volume of the tetrahedron in Exercise 16.5.20 is

$$
V=\frac{1}{3}\left(\frac{1}{2} a b\right) c=\frac{1}{6} a b c
$$

where $\frac{1}{2} a b$ is the area of the triangular base.

