MATH 32A DISCUSSION

JED YANG

1. Directional Derivatives

1.1. Basics. If $f(x, y, z)$ is differentiable, we get the gradient

$$
\nabla f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle
$$

is a vector-valued function. Then the directional derivative of f in the direction of vector \mathbf{u} is $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}$.
1.2. Exercise 15.6.4. Find the directional derivative of $f(x, y)=x^{2} y^{3}-y^{4}$ at $(2,1)$ in the direction $\theta=\pi / 4$.

Solution. Here $\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}-4 y^{3}\right\rangle$ so $\nabla f(2,1)=\langle 4,8\rangle$. Now $\mathbf{u}=$ $\langle\cos \theta, \sin \theta\rangle=\langle\sqrt{2} / 2, \sqrt{2} / 2\rangle$. Then $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=6 \sqrt{2}$.
1.3. Exercise 15.6.16. Find the directional derivative of $f(x, y, z)=\sqrt{x y z}$ at $(3,2,6)$ in the direction of the vector $\mathbf{v}=\langle-1,-2,2\rangle$.

Solution. Here $\nabla f(x, y, z)=\langle y z, x z, x y\rangle / 2 \sqrt{x y z}$, so $\nabla f(3,2,6)=\left\langle 1, \frac{3}{2}, \frac{1}{2}\right\rangle$. Now $\mathbf{u}=\mathbf{v} /|\mathbf{v}|=\left\langle-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle$. Then $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=1$.
1.4. Exercise 15.6.37b. Assume that u and v are differentiable functions of x and y, show that $\nabla(u v)=u \nabla v+v \nabla u$.

Solution. Let us examine the first coordinate of both sides. On the left, we get $(u v)_{x}=u v_{x}+v u_{x}$, which is what we have on the left. Similarly for the second coordinate, so we are done. We also have rules such as $\nabla(a u+b v) a \nabla u+b \nabla v$ for $a, b \in \mathbb{R}$, and $\nabla\left(\frac{u}{v}\right)=\frac{v \nabla u-u \nabla v}{v^{2}}$.
1.5. Exercise 15.6.42. Find equations of the tangent plane and the normal line to the given surface

$$
x-z=4 \arctan (y z)
$$

at $(1+\pi, 1,1)$.
Solution. Let $F(x, y, z)=4 \arctan (y z)-x+z$, then the surface is $F(x, y, z)=0$, thus $\nabla F(1+\pi, 1,1)$ gives a normal vector. Calculating, we get $\nabla F(x, y, z)=$ $\left\langle-1,4 z /\left(1+y^{2} z^{2}\right), 1+4 y /\left(1+y^{2} z^{2}\right)\right\rangle$, and $\nabla F(1+\pi, 1,1)=\langle-1,2,3\rangle$. Tangent plane is given by $-(x-1-\pi)+2(y-1)+3(z-1)=0$. Normal line is given by $\frac{x-1-\pi}{-1}=\frac{y-1}{2}=\frac{z-1}{3}$.
1.6. Exercise 15.6.50. Find the equation of the tangent plane to the hyperboloid $x^{2} / a^{2}+y^{2} / b^{2}-z^{2} / c^{2}=1$ at $\left(x_{0}, y_{0}, z_{0}\right)$.

Solution. Let $f(x, y, z)=x^{2} /{ }^{2}+y^{2} / b^{2}-z^{2} / c^{2}$. Then a normal is given by $\nabla f=$ $\left\langle 2 x / a^{2}, 2 y / b^{2},-2 z / c^{2}\right\rangle$, so we have $\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\left\langle 2 x_{0} / a^{2}, 2 y_{0} / b^{2},-2 z_{0} / c^{2}\right\rangle$. An equation of the tangent plane is therefore $\frac{x_{0}}{a^{2}}\left(x-x_{0}\right)+\frac{y_{0}}{b^{2}}\left(y-y_{0}\right)-\frac{z_{0}}{c^{2}}\left(z-z_{0}\right)=0$. Rearranging, we get $x x_{0} / a^{2}+y y_{0} / b^{2}-z z_{0} / c^{2}=1$, using the fact that $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies $f(x, y, z)=1$.
1.7. Exercise 15.6.55,57,58. These three problems are interesting and worth looking at.
1.8. Exercise 15.6.59. Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $4 x^{2}+y^{2}+z^{2}=9$ at the point $(-1,1,2)$.
Solution. We can take gradient of each and evaluate at the point $(-1,1,2)$, we get $\langle-2,2,-1\rangle$ and $\langle-8,2,4\rangle$. Taking the cross product gives us a vector $\langle 10,16,12\rangle$ that is the direction of the tangent line. The details are left as exercise.

2. Local Extrema

2.1. Basics. The critical points of f are where $\nabla f=0$ or ∇f is undefined. The local extrema only occur at critical points (but not all critical points are local extrema). Using the second derivative test, we have $D=f_{x x} f_{y y}-f_{x y}^{2}$; if $D<0$ we get saddle point, if $D>0$, then we get local min if $f_{x x}>0$, and local max if $f_{x x}<0$. In other cases, we don't know, and it could be anything.
2.2. Exercise 15.7.11. Find the local maximum and minimum values and saddle point(s) of the function $f(x, y)=x^{3}-12 x y+8 y^{3}$.
Solution. Following the recipe, we calculate $\nabla f=\left\langle 3 x^{2}-12 y,-12 x+24 y^{2}\right\rangle$ and set it equal to $\langle 0,0\rangle$. So $x=2 y^{2}$ and $12 y^{4}-12 y=0$, yielding $y=0$ or $y=1$, with $x=0$ and $x=2$, respectively. At $(0,0), D(0,0)<0$ so we get saddle point. At $(2,1), D(2,1)>0$, and $f_{x x}(2,1)>0$, so we get local min.

