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1. Directional Derivatives

1.1. Basics. If f(x, y, z) is differentiable, we get the gradient

∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉
is a vector-valued function. Then the directional derivative of f in the direction of
vector u is Duf = ∇f · u.

1.2. Exercise 15.6.4. Find the directional derivative of f(x, y) = x2y3 − y4 at
(2, 1) in the direction θ = π/4.

Solution. Here ∇f(x, y) =
〈

2xy3, 3x2y2 − 4y3
〉

so ∇f(2, 1) = 〈4, 8〉. Now u =

〈cos θ, sin θ〉 =
〈√

2/2,
√

2/2
〉

. Then Duf = ∇f · u = 6
√

2. �

1.3. Exercise 15.6.16. Find the directional derivative of f(x, y, z) =
√

xyz at
(3, 2, 6) in the direction of the vector v = 〈−1,−2, 2〉.

Solution. Here ∇f(x, y, z) = 〈yz, xz, xy〉/2
√

xyz, so ∇f(3, 2, 6) =
〈

1, 3

2
, 1

2

〉

. Now

u = v/ |v| =
〈

− 1

3
,− 2

3
, 2

3

〉

. Then Duf = ∇f · u = 1. �

1.4. Exercise 15.6.37b. Assume that u and v are differentiable functions of x and
y, show that ∇(uv) = u∇v + v∇u.

Solution. Let us examine the first coordinate of both sides. On the left, we get
(uv)x = uvx + vux, which is what we have on the left. Similarly for the second
coordinate, so we are done. We also have rules such as ∇(au + bv)a∇u + b∇v for
a, b ∈ R, and ∇(u

v
) = v∇u−u∇v

v2 . �

1.5. Exercise 15.6.42. Find equations of the tangent plane and the normal line
to the given surface

x − z = 4 arctan(yz)

at (1 + π, 1, 1).

Solution. Let F (x, y, z) = 4 arctan(yz) − x + z, then the surface is F (x, y, z) = 0,
thus ∇F (1 + π, 1, 1) gives a normal vector. Calculating, we get ∇F (x, y, z) =
〈

−1, 4z/(1 + y2z2), 1 + 4y/(1 + y2z2)
〉

, and ∇F (1 + π, 1, 1) = 〈−1, 2, 3〉. Tangent
plane is given by −(x − 1 − π) + 2(y − 1) + 3(z − 1) = 0. Normal line is given by
x−1−π

−1
= y−1

2
= z−1

3
. �

1.6. Exercise 15.6.50. Find the equation of the tangent plane to the hyperboloid
x2/a2 + y2/b2 − z2/c2 = 1 at (x0, y0, z0).
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Solution. Let f(x, y, z) = x2/2 + y2/b2 − z2/c2. Then a normal is given by ∇f =
〈

2x/a2, 2y/b2,−2z/c2
〉

, so we have ∇f(x0, y0, z0) =
〈

2x0/a2, 2y0/b2,−2z0/c2
〉

. An
equation of the tangent plane is therefore x0

a2 (x− x0) + y0

b2
(y − y0)− z0

c2 (z − z0) = 0.

Rearranging, we get xx0/a2 + yy0/b2 − zz0/c2 = 1, using the fact that (x0, y0, z0)
satisfies f(x, y, z) = 1. �

1.7. Exercise 15.6.55,57,58. These three problems are interesting and worth
looking at.

1.8. Exercise 15.6.59. Find parametric equations for the tangent line to the curve
of intersection of the paraboloid z = x2 + y2 and the ellipsoid 4x2 + y2 + z2 = 9 at
the point (−1, 1, 2).

Solution. We can take gradient of each and evaluate at the point (−1, 1, 2), we get
〈−2, 2,−1〉 and 〈−8, 2, 4〉. Taking the cross product gives us a vector 〈10, 16, 12〉
that is the direction of the tangent line. The details are left as exercise. �

2. Local Extrema

2.1. Basics. The critical points of f are where ∇f = 0 or ∇f is undefined. The
local extrema only occur at critical points (but not all critical points are local
extrema). Using the second derivative test, we have D = fxxfyy − f2

xy; if D < 0
we get saddle point, if D > 0, then we get local min if fxx > 0, and local max if
fxx < 0. In other cases, we don’t know, and it could be anything.

2.2. Exercise 15.7.11. Find the local maximum and minimum values and saddle
point(s) of the function f(x, y) = x3 − 12xy + 8y3.

Solution. Following the recipe, we calculate ∇f =
〈

3x2 − 12y,−12x + 24y2
〉

and

set it equal to 〈0, 0〉. So x = 2y2 and 12y4 − 12y = 0, yielding y = 0 or y = 1, with
x = 0 and x = 2, respectively. At (0, 0), D(0, 0) < 0 so we get saddle point. At
(2, 1), D(2, 1) > 0, and fxx(2, 1) > 0, so we get local min. �
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