MATH 32A DISCUSSION

JED YANG

1. Limits and Continuity

1.1. Definitions. Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then the limit $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ exists if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that if $(x, y) \in D$, and $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$ then $|f(x, y)-L|<\varepsilon$.

It is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.
1.2. Exercise 15.2.5. Find the limit, if it exists, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(1,2)}\left(5 x^{3}-x^{2} y^{2}\right)
$$

Solution. Recall that polynomials are continuous, hence we may employ the substitution method to get the limit: $5 \cdot 1^{3}-1^{2} \cdot 2^{2}=1$.
1.3. Exercise 15.2.16. Find the limit, if it exists, or show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}
$$

Solution. Notice that $0 \leq \frac{x^{2}}{x^{2}+2 y^{2}} \leq 1$, so the quantity above is squeezed between 0 and $\sin ^{2} y \rightarrow 0$, hence the limit is 0 .
1.4. Exercise 15.2.38. Determine the set of points at which the function is continuous:

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+x y+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

Solution. Notice that $x^{2}+x y+y^{2}=0$ only at $(x, y)=(0,0)$. Indeed, the minimum with respect to x is when $x=-y / 2$, which makes the expression $3 y^{2} / 4$. Therefore the function is continuous at all points besides the origin.

As for the origin, it is not continuous there. Indeed, along the line $y=x$ the limit is $\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}+x^{2}+x^{2}}=\frac{1}{3}$. Whereas along the line $y=2 x$ the limit is $\lim _{x \rightarrow 0} \frac{2 x^{2}}{x^{2}+2 x^{2}+4 x^{2}}=\frac{2}{7}$.
1.5. Exercise 15.2.43. Discuss the continuity of the function

$$
f(x, y)= \begin{cases}\frac{\sin x y}{x y} & \text { if } x y \neq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Solution. Obviously f is continuous at all $x y \neq 0$. Now fix a point $\left(x_{0}, y_{0}\right)$ such that $x_{0} y_{0}=0$. Take an arbitrary continuous path $C(t)=(x(t), y(t))$ such that $C(0)=$ $(x(0), y(0))=\left(x_{0}, y_{0}\right)$, and let $z(t)=x(t) y(t)$. If there is a small neighbourhood around 0 such that the path lies in the set $x y=0$, then the limit is 1 . Otherwise, we may assume $f(C(t))=\sin (x(t) y(t)) /(x(t) y(t))=\sin (z(t)) / z(t)$. Then we seek the limit $\left.\lim _{t \rightarrow 0} f(x(t), y(t))=\lim _{t \rightarrow 0} \sin (z(t)) / z(t)\right)$. But as $t \rightarrow 0$, we have $z(t) \rightarrow z(0)=x(0) y(0)=0$, so the limit is 1 as $\lim _{z \rightarrow 0} \sin z / z=1$. Hence we conclude that f is continuous everywhere.

Alternatively, consider $g(x, y)=x y$ and $h(t)=\sin t / t$ for $t \neq 0$ and $h(t)=1$ for $t=0$. Then $f(x, y)=h(g(x, y))$, and both h and g are continuous everywhere, hence so is f.
1.6. Exercise 15.2.45. Show that the function f given by $f(\mathbf{x})=|\mathbf{x}|$ is continuous on \mathbb{R}^{n}.

Solution. First recall that $\mathbf{a} \cdot \mathbf{x}=|\mathbf{a}||\mathbf{x}| \cos \theta$, where θ is the angle between them. Therefore $\mathbf{a} \cdot \mathbf{x} \leq|\mathbf{a}||\mathbf{x}|$. Now compute $|f(\mathbf{x})-f(\mathbf{a})|=||\mathbf{x}|-|\mathbf{a}||=\sqrt{(|\mathbf{x}|-|\mathbf{a}|)^{2}}=$ $\sqrt{|\mathbf{x}|^{2}-2|\mathbf{x}||\mathbf{a}|+|\mathbf{a}|^{2}} \leq \sqrt{\mathbf{x} \cdot \mathbf{x}-2 \mathbf{x} \cdot \mathbf{a}+\mathbf{a} \cdot \mathbf{a}}=\sqrt{(\mathbf{x}-\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})}=|\mathbf{x}-\mathbf{a}|$. So if we make a approach \mathbf{x}, namely, $|\mathbf{x}-\mathbf{a}| \rightarrow 0$, then $|f(\mathbf{x})-f(\mathbf{a})| \rightarrow 0$, namely, $f(\mathbf{x})$ approaches $f(\mathbf{a})$, as desired.

2. Partial Derivatives

2.1. Definitions. The partial derivative of f with respect to x at (a, b) is $f_{x}(a, b)=$ $g^{\prime}(a)$ where $g(x)=f(x, b)$.
2.2. Exercise 15.3.16. Find the first partial derivatives of $f(x, y)=x^{4} y^{3}+8 x^{2} y$.

Solution. Treating y constant we get $f_{x}(x, y)=4 x^{3} y^{3}+16 x y$. Treating x constant we get $f_{y}(x, y)=3 x^{4} y^{2}+8 x^{2}$.
2.3. Exercise 15.3.28. Find the first partial derivatives of

$$
f(x, y)=\int_{y}^{x} \cos \left(t^{2}\right) d t
$$

Solution. Let $A(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$, by FTC, we get $A^{\prime}(x)=\cos \left(x^{2}\right)$. So $f(x, y)=$ $A(x)-A(y)$, giving $f_{x}(x, y)=A^{\prime}(x)=\cos \left(x^{2}\right)$ and $f_{y}(x, y)=-A^{\prime}(y)=-\cos \left(y^{2}\right)$.
2.4. Exercise 15.3.45. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, given

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

Solution. Applying $\frac{\partial}{\partial x}$ we get $2 x+2 z \frac{\partial z}{\partial x}=3 y z+3 x y \frac{\partial z}{\partial x}$, solving, we get $\frac{\partial z}{\partial x}=$ $\frac{3 y z-2 x}{2 z-3 x y}$. Similarly, $\frac{\partial z}{\partial y}=\frac{3 x z-2 y}{2 z-3 x y}$.
2.5. Exercise 15.3.94. If $f(x, y)=\sqrt[3]{x^{3}+y^{3}}$, find $f_{x}(0,0)$.

Solution. Let $g(x)=f(x, 0)=x$, so $g^{\prime}(x)=1$. Now $f_{x}(0,0)=g^{\prime}(0)=1$. Notice that it would be much more difficult to calculate $f_{x}(x, y)$ directly with y an arbitrary constant.

