MATH 32A DISCUSSION

JED YANG

1. Motion in Space

1.1. Exercise 14.4.9. Find the velocity, acceleration, and speed of a particle with position function $\mathbf{r}(t)=\left\langle t^{2}+1, t^{3}, t^{2}-1\right\rangle$.

Solution. We have $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\left\langle 2 t, 3 t^{2}, 2 t\right\rangle, \mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\langle 2,6 t, 2\rangle$, and $v(t)=$ $|\mathbf{v}(t)|=\sqrt{4 t^{2}+9 t^{4}+4 t^{2}}$.
1.2. Exercise 14.4.17. Find the position vector of a particle that has the given accleration and the specified initial velocity and position. $\mathbf{a}(t)=\langle 2 t, \sin t, \cos 2 t\rangle$, $\mathbf{v}(0)=\mathbf{i}, \mathbf{r}(0)=\mathbf{j}$.

Solution. Since $\mathbf{v}^{\prime}(t)=\mathbf{a}(t), \mathbf{v}(t)=\int \mathbf{a}(t) d t=\left\langle t^{2}+c_{1},-\cos t+c_{2}, \frac{1}{2} \sin 2 t+c_{3}\right\rangle$, with $\mathbf{v}(0)=\left\langle c_{1},-1+c_{2}, c_{3}\right\rangle=\langle 1,0,0\rangle$, so $c_{1}=c_{2}=1, c_{3}=0$, thus $\mathbf{v}(t)=$ $\left\langle t^{2}+1,1-\cos t, \frac{1}{2} \sin 2 t\right\rangle$.

Repeating, $\mathbf{r}(t)=\int \mathbf{v}(t) d t=\left\langle\frac{1}{3} t^{3}+t+c_{1}, t-\sin t+c_{2},-\frac{1}{4} \cos 2 t+c_{3}\right\rangle$, with $\mathbf{r}(0)=\left\langle c_{1}, c_{2},-\frac{1}{4}+c_{3}\right\rangle=\langle 0,1,0\rangle$, so $c_{1}=0, c_{2}=1$, and $c_{3}=\frac{1}{4}$, yielding $\mathbf{r}(t)=$ $\left\langle\frac{1}{3} t^{3}+t, t-\sin t+1, \frac{1}{4}-\frac{1}{4} \cos 2 t\right\rangle$.
1.3. Exercise 14.4.20. What force is required so that a particle of mass m hass the position function $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t^{3}\right\rangle$.

Solution. We have $\mathbf{F}=m \mathbf{a}$, so $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 2 t, 3 t^{2}\right\rangle, \mathbf{r}^{\prime \prime}(t)=\langle 6 t, 2,6 t\rangle$, and $\mathbf{F}(t)=$ $\langle 6 m t, 2 m, 6 m t\rangle$.
1.4. Exercise 14.4.22. Show that if a particle moves with constant speed, then the velocity and acceleration vectors are orthogonal.

Solution. Constant speed means $v^{\prime}(t)=0$. Now $(v(t))^{2}=|\mathbf{v}(t)|^{2}=\mathbf{v}(t) \cdot \mathbf{v}(t)$. Differentiate both sides: $2 v(t) v^{\prime}(t)=\mathbf{v}(t) \cdot \mathbf{a}(t)+\mathbf{a}(t) \cdot \mathbf{v}(t)$. Thus we conclude that $\mathbf{v}(t) \cdot \mathbf{a}(t)=0$.
1.5. Exercise 14.4.37. Find the tangential and normal components of the acceleration vector of $\mathbf{r}(t)=\left\langle e^{t}, \sqrt{2} t, e^{-t}\right\rangle$.

Solution. The tangential component is $a_{T}=v^{\prime}$ and the normal component is $a_{N}=\kappa v^{2}$. Now $\mathbf{v}(t)=\left\langle e^{t}, \sqrt{2},-e^{-t}\right\rangle$, so $v(t)=|\mathbf{v}(t)|=\sqrt{e^{2 t}+2+e^{-2 t}}=$ $\sqrt{\left(e^{t}+e^{-t}\right)^{2}}=e^{t}+e^{-t}$, hence $a_{T}=v^{\prime}=e^{t}-e^{-t}$. Also, $\mathbf{T}(t)=\mathbf{v}(t) / v(t)=$ $\left\langle e^{t}, \sqrt{2},-e^{-t}\right\rangle /\left(e^{t}+e^{-t}\right)$. So we get $\mathbf{T}^{\prime}(t)=\left(\mathbf{a}(t) v(t)-\mathbf{v}(t) v^{\prime}(t)\right) /(v(t))^{2}=$ $\left(\left(e^{t}+e^{-t}\right)\left\langle e^{t}, 0, e^{-t}\right\rangle-\left(e^{t}-e^{-t}\right)\left\langle e^{t}, \sqrt{2},-e^{-t}\right\rangle\right) /\left(e^{t}+e^{-t}\right)^{2} \operatorname{Now}\left|\mathbf{T}^{\prime}(t)\right|=\kappa v$, so $a_{N}=\left|\mathbf{T}^{\prime}(t)\right| v(t)$.

2. Functions of Several Variables

2.1. Exercise 15.1.9. Let $f(x, y, z)=e^{\sqrt{z-x^{2}-y^{2}}}$. Find the domain and range of f.

Solution. We need $z-x^{2}-y^{2} \geq 0$, so the domain is a solid paraboloid. The range of $\sqrt{z-x^{2}-y^{2}}$ is $[0, \infty)$ so the range of f is $[1, \infty)$.
2.2. Exercise 15.1.15. Find and sketch the domain of the function $f(x, y)=$ $\sqrt{1-x^{2}}-\sqrt{1-y^{2}}$.

Solution. We need $1-x^{2} \geq 0$ so $-1 \leq x \leq 1$, similarly, $-1 \leq y \leq 1$, so the domain is a square.
2.3. Exercise 15.1.65-66. Describe how the graph of g is obtained from the graph of f.
(a) $g(x, y)=f(x, y)+2$,
(b) $g(x, y)=2 f(x, y)$,
(c) $g(x, y)=-f(x, y)$,
(d) $g(x, y)=2-f(x, y)$;
(e) $g(x, y)=f(x-2, y)$,
(f) $g(x, y)=f(x, y+2)$,
(g) $g(x, y)=f(x+3, y-4)$.

Solution. This is obvious.

3. Cylinders and Quadric Surfaces

3.1. Exercise 13.6.3. Describe and sketch the surface $y^{2}+4 z^{2}=4$.

Solution. Elliptic cylinder.
3.2. Exercise 13.6.42. Sketch the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=2-x^{2}-y^{2}$.
Solution. Solve for intersection: $x^{2}+y^{2}=2-x^{2}-y^{2}, x^{2}+y^{2}=1$ is a circle, at $z=1$.
3.3. Exercise 13.6.43. Find an equation of the surface obtained by rotating the parabola $y=x^{2}$ about the y-axis.
Solution. We get $y=x^{2}+z^{2}$.

