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1. Motion in Space

1.1. Exercise 14.4.9. Find the velocity, acceleration, and speed of a particle with
position function r(t) =

〈

t2 + 1, t3, t2 − 1
〉

.

Solution. We have v(t) = r′(t) =
〈

2t, 3t2, 2t
〉

, a(t) = v′(t) = 〈2, 6t, 2〉, and v(t) =

|v(t)| =
√

4t2 + 9t4 + 4t2. �

1.2. Exercise 14.4.17. Find the position vector of a particle that has the given
accleration and the specified initial velocity and position. a(t) = 〈2t, sin t, cos 2t〉,
v(0) = i, r(0) = j.

Solution. Since v′(t) = a(t), v(t) =
∫

a(t)dt =
〈

t2 + c1,− cos t + c2,
1

2
sin 2t + c3

〉

,
with v(0) = 〈c1,−1 + c2, c3〉 = 〈1, 0, 0〉, so c1 = c2 = 1, c3 = 0, thus v(t) =
〈

t2 + 1, 1 − cos t, 1

2
sin 2t

〉

.

Repeating, r(t) =
∫

v(t)dt =
〈

1

3
t3 + t + c1, t − sin t + c2,− 1

4
cos 2t + c3

〉

, with

r(0) =
〈

c1, c2,− 1

4
+ c3

〉

= 〈0, 1, 0〉, so c1 = 0, c2 = 1, and c3 = 1

4
, yielding r(t) =

〈

1

3
t3 + t, t − sin t + 1, 1

4
− 1

4
cos 2t

〉

. �

1.3. Exercise 14.4.20. What force is required so that a particle of mass m hass
the position function r(t) =

〈

t3, t2, t3
〉

.

Solution. We have F = ma, so r′(t) =
〈

3t2, 2t, 3t2
〉

, r′′(t) = 〈6t, 2, 6t〉, and F(t) =
〈6mt, 2m, 6mt〉. �

1.4. Exercise 14.4.22. Show that if a particle moves with constant speed, then
the velocity and acceleration vectors are orthogonal.

Solution. Constant speed means v′(t) = 0. Now (v(t))2 = |v(t)|2 = v(t) · v(t).
Differentiate both sides: 2v(t)v′(t) = v(t) ·a(t)+a(t) ·v(t). Thus we conclude that
v(t) · a(t) = 0. �

1.5. Exercise 14.4.37. Find the tangential and normal components of the accel-
eration vector of r(t) =

〈

et,
√

2t, e−t
〉

.

Solution. The tangential component is aT = v′ and the normal component is
aN = κv2. Now v(t) =

〈

et,
√

2,−e−t
〉

, so v(t) = |v(t)| =
√

e2t + 2 + e−2t =
√

(et + e−t)2 = et + e−t, hence aT = v′ = et − e−t. Also, T(t) = v(t)/v(t) =
〈

et,
√

2,−e−t
〉

/(et + e−t). So we get T′(t) = (a(t)v(t) − v(t)v′(t))/(v(t))2 =

((et + e−t)〈et, 0, e−t〉 − (et − e−t)
〈

et,
√

2,−e−t
〉

)/(et + e−t)2 Now |T′(t)| = κv,
so aN = |T′(t)| v(t). �
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2. Functions of Several Variables

2.1. Exercise 15.1.9. Let f(x, y, z) = e
√

z−x2
−y2

. Find the domain and range of
f .

Solution. We need z − x2 − y2 ≥ 0, so the domain is a solid paraboloid. The range

of
√

z − x2 − y2 is [0,∞) so the range of f is [1,∞). �

2.2. Exercise 15.1.15. Find and sketch the domain of the function f(x, y) =√
1 − x2 −

√

1 − y2.

Solution. We need 1− x2 ≥ 0 so −1 ≤ x ≤ 1, similarly, −1 ≤ y ≤ 1, so the domain
is a square. �

2.3. Exercise 15.1.65–66. Describe how the graph of g is obtained from the graph
of f .

(a) g(x, y) = f(x, y) + 2,
(b) g(x, y) = 2f(x, y),
(c) g(x, y) = −f(x, y),
(d) g(x, y) = 2 − f(x, y);
(e) g(x, y) = f(x − 2, y),
(f) g(x, y) = f(x, y + 2),
(g) g(x, y) = f(x + 3, y − 4).

Solution. This is obvious. �

3. Cylinders and Quadric Surfaces

3.1. Exercise 13.6.3. Describe and sketch the surface y2 + 4z2 = 4.

Solution. Elliptic cylinder. �

3.2. Exercise 13.6.42. Sketch the region bounded by the paraboloids z = x2 + y2

and z = 2 − x2 − y2.

Solution. Solve for intersection: x2 + y2 = 2 − x2 − y2, x2 + y2 = 1 is a circle, at
z = 1. �

3.3. Exercise 13.6.43. Find an equation of the surface obtained by rotating the
parabola y = x2 about the y-axis.

Solution. We get y = x2 + z2. �
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