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1. Parametric Curves and Vector Functions

1.1. Exercise 11.1.14. Given parametric equation x = et − 1, y = e2t, find the
Cartesian equation.

Solution. Obviously y = (x + 1)2. Notice that et > 0, so the graph is only the
portion x > −1, y > 0. ¤

1.2. Exercise 11.1.41. Let A and B be circles of radii a and b, respectively, cen-
tred at the origin. Let a ray from the origin intersect the circles and draw per-
pendicular as in the figure (in the textbook). Find the collection of such points
P .

Solution. It is obvious that x = a cos θ and y = b sin θ. So, eliminating θ, we have
(x/a)2 + (y/b)2 = 1 is an ellipse. ¤

1.3. Exercise 14.1.1. Find the domain of the vector function

r(t) =
〈

√

4 − t2, e−3t, ln(t + 1)
〉

.

Solution. We need 4 − t2 ≥ 0 and t + 1 > 0, so we get t ∈ [−2, 2] ∩ (−1,∞) =
(−1, 2]. ¤

1.4. Exercise 14.1.41. Suppose the trajectories of two particles are given by the
vector functions r1(t) =

〈

t2, 7t − 12, t2
〉

and r2(t) =
〈

4t − 3, t2, 5t − 6
〉

, respec-
tively. Do the particles collide?

Solution. If they do, then r1(t) = r2(t) for some t. Directly solving we get 4t− 3 =
t2 = 5t − 6 so t = 3 is possible. Checking, we get indeed r1(3) = r2(3), so they do
collide. ¤

2. Equations of Lines and Planes

2.1. Basics. If a line L passes through the point P0(x0, y0, z0), represented by the
vector r0 = 〈x0, y0, z0〉 and has direction v = 〈a, b, c〉, which are the direction

numbers, then the vector equation of L is r = r0 + tv, where r = 〈x, y, z〉. The
parametric equations are just the three components x = x0 + at, y = y0 + at,
z = z0 + at. The symmetric equations are x−x0

a
= y−y0

b
= z−z0

c
.

A plane that passes through P0 and has normal vector n = 〈a, b, c〉 has vector

equation n·r = n·r0, and has the scalar equation a(x−x0)+b(y−y0)+c(z−z0) = 0.
The linear equation is ax + by + cz + d = 0, where d = −(ax0 + by0 + cz0) can be
found by collecting terms.
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The distance between P1(x1, y1, z1) to the plane ax + by + cz + d = 0 is

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
.

2.2. Exercise 13.5.53. Determine if the planes given by x = 4y − 2z, 8y = 1 +
2x + 4z are parallel, perpendicular, or neither. If neither, find the angle between
them.

Solution. Normal to the planes are n1 = 〈−1, 4,−2〉 and n2 = 〈2,−8, 4〉, respec-
tively. To find the angle θ between the planes, we find the angle θ between the
normals by using the dot product: n1 · n2 = |n1| |n2| cos θ. Notice −2n1 = n2 so
they are parallel. Or we could calculate and get θ = 0. ¤

2.3. Exercise 13.5.73. Show that the distance between the parallel planes ax +

by + cz + d1 = 0 and ax + by + cz + d2 = 0 is D = |d1−d2|√
a2+b2+c2

.

2.4. Exercise 13.5.75. Show that the lines with symmetric equations x = y = z
and x + 1 = y/2 = z/3 are skew, and find the distance between these lines.

2.5. Exercise 13.5.77. If a, b, and c are not all 0, show that the equation ax +
by + cz + d = 0 represents a plane and 〈a, b, c〉 is a normal vector to the plane.
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