MATH 32A DISCUSSION

JED YANG

1. Parametric Curves and Vector Functions

1.1. Exercise 11.1.14. Given parametric equation $x=e^{t}-1, y=e^{2 t}$, find the Cartesian equation.

Solution. Obviously $y=(x+1)^{2}$. Notice that $e^{t}>0$, so the graph is only the portion $x>-1, y>0$.
1.2. Exercise 11.1.41. Let A and B be circles of radii a and b, respectively, centred at the origin. Let a ray from the origin intersect the circles and draw perpendicular as in the figure (in the textbook). Find the collection of such points P.

Solution. It is obvious that $x=a \cos \theta$ and $y=b \sin \theta$. So, eliminating θ, we have $(x / a)^{2}+(y / b)^{2}=1$ is an ellipse.
1.3. Exercise 14.1.1. Find the domain of the vector function

$$
\mathbf{r}(t)=\left\langle\sqrt{4-t^{2}}, e^{-3 t}, \ln (t+1)\right\rangle
$$

Solution. We need $4-t^{2} \geq 0$ and $t+1>0$, so we get $t \in[-2,2] \cap(-1, \infty)=$ $(-1,2]$.
1.4. Exercise 14.1.41. Suppose the trajectories of two particles are given by the vector functions $\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle$ and $\mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle$, respectively. Do the particles collide?

Solution. If they do, then $\mathbf{r}_{1}(t)=\mathbf{r}_{2}(t)$ for some t. Directly solving we get $4 t-3=$ $t^{2}=5 t-6$ so $t=3$ is possible. Checking, we get indeed $\mathbf{r}_{1}(3)=\mathbf{r}_{2}(3)$, so they do collide.

2. Equations of Lines and Planes

2.1. Basics. If a line L passes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$, represented by the vector $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and has direction $\mathbf{v}=\langle a, b, c\rangle$, which are the direction numbers, then the vector equation of L is $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$, where $\mathbf{r}=\langle x, y, z\rangle$. The parametric equations are just the three components $x=x_{0}+a t, y=y_{0}+a t$, $z=z_{0}+a t$. The symmetric equations are $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$.

A plane that passes through P_{0} and has normal vector $\mathbf{n}=\langle a, b, c\rangle$ has vector equation $\mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \mathbf{r}_{0}$, and has the scalar equation $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$. The linear equation is $a x+b y+c z+d=0$, where $d=-\left(a x_{0}+b y_{0}+c z_{0}\right)$ can be found by collecting terms.

The distance between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$ is

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

2.2. Exercise 13.5.53. Determine if the planes given by $x=4 y-2 z, 8 y=1+$ $2 x+4 z$ are parallel, perpendicular, or neither. If neither, find the angle between them.

Solution. Normal to the planes are $\mathbf{n}_{1}=\langle-1,4,-2\rangle$ and $\mathbf{n}_{2}=\langle 2,-8,4\rangle$, respectively. To find the angle θ between the planes, we find the angle θ between the normals by using the dot product: $\mathbf{n}_{1} \cdot \mathbf{n}_{2}=\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right| \cos \theta$. Notice $-2 \mathbf{n}_{1}=\mathbf{n}_{2}$ so they are parallel. Or we could calculate and get $\theta=0$.
2.3. Exercise 13.5.73. Show that the distance between the parallel planes $a x+$ $b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}=0$ is $D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
2.4. Exercise 13.5.75. Show that the lines with symmetric equations $x=y=z$ and $x+1=y / 2=z / 3$ are skew, and find the distance between these lines.
2.5. Exercise 13.5.77. If a, b, and c are not all 0 , show that the equation $a x+$ $b y+c z+d=0$ represents a plane and $\langle a, b, c\rangle$ is a normal vector to the plane.

